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FOREWORD

This Final Report was prepared by McDonnell Douglas Astronautics Company - East

(MDAC-EAST) for NASA-MSC Contract NAS 9-13091, Design and Fabrication of a High

Temperature Leading Edge Heating Array - Phase I. It covers the period 29 June

1972 to 5 December 1972. This effort was performed for the National Aeronautics

and Space Administration, Manned Spacecraft Center, under the direction of the

Structural Test Branch of the Structures and Mechanics Division with Mr. W. D. Sherborne

as the Technical Monitor (STM). Mr. H. E. Christensen was the Program Manager for

MDAC-EAST.
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ABSTRACT

This report describes the progress made by MDAC-EAST during a Phase I program

to design a high temperature heating array for environmentally testing full-scale

Shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates

and pressures. Heat transfer analyses of the heating array, individual modules and

the Shuttle leading edge were performed, which influenced the array design, and the

design, fabrication and testing of a prototype heater module.

A modular heating array was evolved to produce the flight temperature

distribution around the Shuttle leading edge. Heater modules utilizing graphite

elements were used to produce the high temperatures (up to 35000 F) in the stagnation

region and absorber modules are used as necessary to produce the high chordwise

thermal gradients. The array is designed to operate in an inert nitrogen atmosphere

at near vacuum conditions as well as at sea level pressure. Design features

incorporated into the heater module include tapered peg electrodes, a lever arm

expansion end assembly, compact bus plates, structural water manifolds, enclosing

reflectors, gas spray bars and nesting modules so that even larger specimens can

be tested. The newly designed expansion end assembly increases heating uniformity

for arrays butted end to end and allows flexibility in orientation of the module.

Reflector coating tests were performed which demonstrated a significant increase

in the heating efficiency of the system using a gold coating on the reflectors instead

of chrome plating. This gold coating is very important because for a given specimen

temperature the element temperature is lower thereby reducing the input power, the

cooling requirements, and the potential for arcing.

Performance and heat flux uniformity calculations were correlated with full

scale testing of the newly fabricated heater module.

Tests were also performed using a heat flux sensor and a specimen-mounted

thermocouple as a feedback signal in a successful demonstration of heater module

control.

A preliminary design of the full scale heating array was completed and estimates

for fabricating and acceptance testing have been forwarded to NASA.
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1.0 INTRODUCTION

The concept of a reusable Space Shuttle has generated new types of Thermal

Protection Systems (TPS) and consequently placed additional requirements on entry

heating simulation facilities. One of the key elements of the TPS is the leading

edges which must withstand severe entry heating at low pressures of entry for

multiple flights. A heating facility is needed to test the performance of this TPS.

The heating facility (or array) must be capable of imposing heating which varies

in intensity around the leading edge from 32000 F at the stagnation point to 8750F

on the trailing surface. Furthermore, such heating must be imposed at flight

pressures ranging from 0.5 to 760 torr. Also these conditions must be repeatedly

imposed on various sizes of leading edges up to 10 feet in length at a reasonable

cost per mission cycle.

This report describes a five month effort (Phase I) in which the TPS test

requirements were incorporated into the design of a full scale heating array which

is to be fabricated in Phase II. The goal of Phase I was to solve development

problems for a 35000F heating array by analyzing the heat exchange between the

test article and the heating array, by fabricating and testing a prototype heater

module, and by performing a preliminary design of the full scale heating array

including interfaces and auxiliary equipment.

The array employs the graphite heater technology previously developed by

McDonnell Douglas Corporation (MDC) to overcome several problems that exist with

quartz lamps. Quartz lamps have a relatively short life, are expensive to replace,

arc-over at low pressure (1 to 18 torr), and require high density installation to

achieve a high heat flux. This high density, in turn, causes over-temperature of

the quartz envelope surrounding the tungsten filaments. Alternatively, the

graphite heater system has low cost elements which have long life and are simple

to replace and operate at low pressures as well as at atmospheric pressure. Graphite

heaters achieve a higher heat flux density than quartz lamps because of the higher

view factor inherent in the design and the higher emissivity of the graphite when

compared to the tungsten filament. MDC and NASA have successfully used the

graphite heaters (up to a 30 x 39 inch size) to test flat TPS panels at temperatures

up to 2300*F. One of the goals of this program, to increase the test temperature to

3500 0F, requires 4.2 times the energy required for the 23000F testing. In order to

accomplish this goal, many design innovations were incorporated into the heater

module and into the heating array. These also accomplished other goals of the progra

to increase heat flux uniformity and flexibility of the array.
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Analyses were performed to determine the size and number of modules comprising

the unit to achieve the desired heating pattern on a Shuttle leading edge (6 to 15

inch radius x 30 inch long) bathed in a gaseous nitrogen environment. A unit was

designed to fit easily into a vacuum chamber at NASA-MSC and to be compatible with

the NASA cooling system. This graphite heater unit is to operate off conventional

ignitron or SCR power controllers (such as used for quartz lamps) using an intermediate

step-down transformer. The configuration selected for the array (shown in Figure 1-1)

employs standard size modules that fit around the leading edge. An individual

heater module for this array was successfully designed, analyzed, fabricated and

tested during Phase I.

The following sections present the details of the analyses, preliminary designs,

fabrication techniques, and test activities performed to design a heating array for

testing various size leading edges.

During the course of Phase I, many meetings were held with Mr. W. D. Sherborne

(CTM) and other NASA personnel to ensure that the heating array design would meet

NASA's needs.

The authors wish to also acknowledge the contributions of the following person-

nel toward the successful completion of this program:

Thermodynamics - T. W. Parkinson, J. M. Buchanan

Design and Testing - F. W. Brodbeck, D. Q. Durant, R. D. Taylor, R. Lenze

Testing - K. Hoffman

Manufacturing - H. Stevenson, R. Callier

Physics Laboratory - R. M. F. Linford, R. J. Schmitt, K. E. Steube

Chemistry Laboratory - W. Dinger
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2,0 SUMMARY

Following are the principal accomplishments which were made in the design of

the high temperature leading edge heating array.

o Temperature and net heat flux calculations for each module in the

heating array were performed for 32000F and 35000F maximum temperatures

and associated distributions around the leading edges.

o Standard size heater and absorber modules were incorporated into the

array to achieve the desired environments around the leading edge.

o Design studies and heater tests demonstrated the importance of highly

reflective reflectors within the heater module. It was shown that eold

coated reflectors were far superior to the polished chrome reflectors

previously used, and significantly increased the heater operating

efficiency. This greater efficiency reduced the power requirements

thereby reducing the arcing potential and the cooling water requirements.

For example, at the same power setting, specimen temperature increased

from 2725*F to 3239*F using gold in place of chrome plated reflectors.

o Detailed thermal analysis of an existing development heater was used

to predict the performance of the new leading edge prototype heater

module.

o The heater module and full scale array were designed to meet the system

requirement yet incorporate sufficient flexibility to allow for additional

tests not encompassed by the design requirements.

o A prototype heater module (5 x 39 inch) was fabricated and tested.

o The design features incorporated into the heater module include tapered

peg electrodes, a lever arm expansion end assembly, compact bus plates,

structural water manifolds, enclosing reflectors, gas spray bars, and a

nesting module design so that even larger specimens can be tested.

o A carbon-carbon specimen from a Shuttle leading edge instrumented with

tungsten-rhenium thermocouples and heat flux sensors was positioned over

the prototype module and tested in a 10 torr nitrogen environment to

determine.the performance and heat flux uniformity of the module.

o Detailed thermal modelling of prototype heater module was used to

calculate heat flux uniformity and correlate test results.

FRECEDUG NAGT B K NO

5



IGH TEMPERATURE MDC E0731
EADING EDGE HEATING ARRAY - PHASE I 5 DECEMBER 1972

o Performance and uniformity tests were conducted. A 30100 F specimen

temperature was obtained without any problems at a power setting below

the design maximum using chrome plated reflectors. Much higher tempera-

tures at the same power settings are possible by using gold coated

reflectors.

o Demonstration runs were conducted on the prototype module using thermo-

couples and heat flux sensors as the feedback signals for controlling

the unit.

o A preliminary design of the full scale heating array was completed

which includes configuration studies, complete mechanical design,

power requirements, control techniques, temperature measurement

techniques, interface definition and auxiliary equipment definition.

This heating array satisfies all the design requirements and is designed

for testing a variety of Thermal Protection Systems (TPS) ranging from

a flat panel to a 6 to 15-inch radius leading edge. Some of the types

of materials/systems that can be tested are:

o Carbon-Carbon

o Ablators

o Metallics

o Ceramic Reusable Surface Insulations

o Antenna Materials

o Orbital Thermal Control Coatings

o The maximum electrical power required for testing the 8-inch radius pro-

totype leading edge specimen was estimated to be 600 Kilowatts.

o Technical information and cost estimates were forwarded to NASA for

fabrication and testing of the full-scale heating array.

6
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3.0 DESIGN GOALS

The objective of Phase I was to study and design a full-scale high temperature

leading edge heating array system by developing various design concepts and select-

ing the best approach from the evaluation of a prototype. The heating array was to

be flexible and capable of testing various size leading edges. Figure 3-1 shows a

section of the test article to be tested by the array. The design goals for the

heating array are summarized from Reference 1 as follows:

Operating Pressure Range: 0.5 to 760 torr in an inert environment (nitrogen:

Array Size: A size which will allow testing of a leading edge of at least

30-inch span with adjustment provided to allow the leading edge radius to

vary from 6-inches to 15-inches. Figure 3-2 depicts the test specimen

configuration limits.

Maximum Temperature: Referring to Figure 3-1, consistent with the afore-

mentioned leading edge radius adjustment, Area I will be heated to a

maximum temperature of 35000F while Area II and IIA will be heated to

a maximum temperature of 2500*F. The adjustment feature will allow Area I

to be varied from 19 to 38 inch arc length and radii from 6 to 15 inches.

Area II and IIA will be located tangent to the end of the Area I arc.

Heating Rate: 600 0F/min. between 80*F and 28000F.

Cooling Rate: 800F/min. between 28000 F and 2000*F.

Chordwise Temperature Distribution: Shown in Figure 3-3.

Spanwise Uniformity: Minimum heat flux along the span of any given heating

zone to be 90% of the maximum incident heat flux in the same zone during

steady state heating at maximum temperature conditions.

The array is to be designed for installation at NASA's Manned Spacecraft Center

Test Facility.

The array will have sufficient waste heat removal capacity to prevent heating

of uncooled vacuum chamber walls. Coolant temperatures and flow rates of the

heater array will be compatible with the MSC closed loop cooling system. Further,

the array is to be designed to use and be compatible with 12 or fewer ignitron con-

trollers (440 volt, 400 amp), "Data-Trak" programmers, and "Thermac" temperature

controllers furnished by MSC.

7
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4.0 HEAT TRANSFER ANALYSIS OF ARRAY AND FULL SIZE TEST ARTICLE

Heat transfer analyses were performed on the array and test article to guide

the design of the heating array and to provide performance information such as

power and module temperature.

Heat transfer analyses were performed using multinode thermal models of the

entire heating array and the leading edge, heat storage, view factor calculations,

and a radiosity network solution for handling radiant energy reflections. After

several array configurations had been analyzed, it was concluded that heat absorber

modules, as well as heater modules, were required to achieve the desired temperature

distributions. The following paragraphs describe, in detail, the models used and
0

the results of the studies.

4.1 SIMULATION OF A LEADING EDGE TEMPERATURE DISTRIBUTION WITH A RADIANT

HEATING ARRAY. A thermal analysis was performed to determine the requirements of

a high temperature heating array which would provide a specified leading edge temper-

ature distribution. A large computer model,consisting of 131 nodes (70 thermal

nodes and 61 radiosity nodes),was used to perform the thermal analysis. The ther-

mal nodes (shown in Figure 4-1) included 42 carbon-carbon nodes, 8 RSI nodes, 8

fibrous insulation nodes, and 12 heater module control zone nodes. The radiosity

nodes were used to describe the radiation transfer (including reflections) between

surface nodes. Conduction in the carbon-carbon leading edge was included in both

the parallel and perpendicular directions, as well as internal radiation between the

carbon-carbon nodes which view each other.

The thermal analysis consisted of specifying temperatures at various points

around the leading edge (one temperature across from each heater module) and

solving for the heater module temperature and the net power required to maintain

that temperature. Figure 4-2 shows the temperature distribution in the carbon-

carbon leading edge that was used in the analysis. The aft portion of the leading

edge consisted of Reusable Surface Insulation (RSI) whose surface temperatures are

characterized by Nodes 22 and 26. Node 22 was controlled to 23000F and Node 26

was controlled initially to 7000 F. Two heater array configurations were analyzed.

The first configuration was a 10 heater module array consisting of Nodes 36 through

45 as shown in Figure 4-1. The second configuration was the same as the first

except that Nodes 36 and 37 were water cooled absorbers/reflectors rather than heater

modules.

11
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S 41
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44

*OVERSHOOT TEMPERATURES
3600

3200

2800

2400

S2000

c-

S1600

1200

800

400

0 RSI - CARBON- CARBON RSI

-3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0
S/R

DESIRED LEADING EDGE TEMPERATURE DISTRIBUTION
FIGURE 4-2
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4.1.1 Ten Heater Module Configuration. The results of this analysis are

shown in Figure 4-3. The solid symbols are the control nodes; the solid line is

the desired temperature distribution, and the dashed line is the predicted tempera-

ture distribution. The computer solution gives realistic heater module temperatures

for all modules except Node 37. An impossible temperature, below OOR, was calculated

for Node 37 in order to achieve a drop from 22100 F to 8740 F in 4-inches along the

carbon-carbon at the top of the leading edge. This condition resulted from an

abundant supply of energy to Nodes 1 and 2 by direct radiation, reflected radiation

and conduction from sources other than Node 37.

It is apparent from this thermal analysis that Nodes 1 and 2 must be isolated

from radiation emanating from the high temperature areas in order to produce the

desired temperature distribution around the carbon-carbon leading edge. This can

be achieved by changing the configuration of the heater modules so that the

modules essentially come in contact with the carbon-carbon between Nodes 2 and 3.

This seemed impractical and would have required a redesign of the modules (Section 6).

An6ther approach would be to provide a curtain that would extend from the Nodes

37-38 intersection to the Nodes 2-3 intersection. The curtain temperature could

be controlled through the use of surface coatings. Both of these approaches

require further analysis to give greater confidence in controlling to the desired

temperature distribution.

Another approach was to examine the heating distribution around the leading

edge and to determine alternate temperatures at Nodes 1 and 2. It is felt that

the temperature in this area is unusually low for the flight conditions that would

produce a 3200°F stagnation point on the leading edge. This conclusion was arrived

at by studying Shuttle designs and by discussions with NASA personnel. A thermal

analysis was performed with Nodes 38 through 45 as heater modules and Nodes 36 and

37 functioning as water cooled absorbers. The purpose of this analysis was to

determine the temperature which could be achieved at Nodes 1 and 2 without changing

the configuration shown in Figure 4-1.

4.1.2 Eight Heater Module/Two Absorber Configuration. This analysis was the

same as the ten heater module analysis except that Nodes 36 and 37 were held

at 1000F and Nodes 1 and 2 in the carbon-carbon were allowed to find their

own temperature as determined by the energy balance. Two cases were run to deter-

mine the effect of the emittance of Nodes 36 and 37. The results of this analysis

are shown in Figure 4-4. The solid symbols are the control nodes and the solid

14
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SYMBOLS
O CONTROL NODE

=- MODULE TEMPERATURE
3600

40

3200

39

2800

2400

38

NOTES: 1) 131 NODE THERMAL MODEL
2) CALCULATED TEMPERATURE FOR

- 2000 NODE 37 IS BELOW OOR, UNREALISTIC
CONDITION

I-J

- 1600 37

38

39 CHORD CENTERLINE

I-I
1200

0040

800 42

NODE 36

400

RSI - - < , CARBON-CARBON ---- RS

-3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0
S/R

LEADING EDGE AND HEATER MODULE TEMPERATURES FOR THE TEN
HEATER MODULE CONFIGURATION

FIGURE 4-3
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SYMBOLS
0 CONTROL NODE

r-- MODULE TEMPERATURE
E = ABSORBER EMITTANCE

3600

NOTE - 131 NODE THERMAL MODEL
40

r--1

3200 1
39

2800

2400 _ 36 E 37 = 0.9

" E 36 E37= 0.3 E 36 E 3 7 = 0.3 / 100 F
2000 ABSORBER

36
LJ

a 1600 37

S/

/ 39 CHORD CENTERLINE
1200

40/ 4 R = 8.0 IN.

/41
800

/ 44

S E 36 = 37 = 0.9 1000F
400 ABSORBER

NODE 36 37

0 RS I-I CARBON-CARBON , RSI
-3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0

S/R

LEADING EDGE AND HEATER MODULE TEMPERATURES FOR THE EIGHT
HEATER MODULE TWO ABSORBER MODULE CONFIGURATION

FIGURE 4-4
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line is the desired temperature distribution. Two predicted temperature distribu-

tions are shown for an emittance of 0.9 and 0.3 for Nodes 36 and 37. It can be

seen that if Nodes 36 and 37 are water cooled absorbers, (E = 0.9), a reasonable

temperature distribution in the carbon-carbon leading edge can be achieved. If

Nodes 36 and 37 are water cooled reflectors (E = 0.3), much higher temperatures are

obtained at Nodes 1 and 2 illustrating the importance of reflected radiant energy

in determining temperatures in this area. Figure 4-5 is a summary of the heating

array temperatures and heat fluxes required to maintain those temperatures for the

eight heater module configuration. These are steady state results for the leading

edge temperature distribution shown in Figure 4-4. The maximum net heat flux

generated by a heater module is 11.22 Btu/ft2-sec (for Node 40 operating at 3300*F).

It should be noted that the net heat flux does not include the heat losses within

the individual heater modules. The heat losses within a module are discussed in

Sections 5 and 6.

4.2 SIMULATION OF A 35000 F LEADING EDGE TEMPERATURE DISTRIBUTION USING THE

HEATER ARRAY. The heater array is intended to be capable of heating a carbon-

carbon leading edge to 3500 0F surface temperature. A thermal analysis was per-

formed in order to establish the heater configuration and power requirements for

this condition. The same thermal model and analysis procedure described in Section

4.1 was employed utilizing the eight heater module/two absorber array configuration.

The 3500 0F (39600R) temperature distribution (Figure 4-6) to be achieved on the

leading edge was calculated by scaling the 3200OF (36600R) temperature distribution

using a factor of 1.082 (1.082 = 3960/3660).

The computed temperatures are shown in Figure 4-7. The solid symbols are

control nodes on the leading edge, the solid curve is the desired temperature dis-

tribution, and the dashed line is the predicted temperature distribution. Also

shown are the heater module temperatures required to produce the leading edge tem-

peratures. This analysis indicates that a reasonable temperature distribution on

the leading edge can be achieved with the eight heater module configuration.

Figure 4-8 is a summary of the temperatures and net heat fluxes required to main-

tain those temperatures for steady state conditions. The net heat flux does not

include the heat losses experienced within the individual heater modules. The

maximum net heat flux required for a heater module is 14.09 Btu/ft2-sec for Node 40

operating at 3596°F.
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PREDICTED LEADING EDGE HEATING ARRAY TEMPERATURE AND HEAT FLUX
DISTRIBUTIONS FOR THE EIGHT HEATER MODULE CONFIGURATION

FIGURE 4-5
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3500oF LEADING EDGE TEMPERATURE DISTRIBUTION
FIGURE 4-6
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SYMBOLS
0 CONTROL NODE

r MODULE TEMPERATURE

40

HEATER MODULE
39 TEMPERATURE
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2800 44
HEATER MODULE T _
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38 45
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NOTES: ABSORBER

131 NODE THERMAL MODEL
EIGHT HEATER MODULE CONFIGURATION
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LEADING EDGE AND HEATER MODULE TEMPERATURES
FOR A PEAK CARBON-CARBON TEMPERATURE OF 3500o F

FIGURE 4-7
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100 OF 100 OF
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2517
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3381 39 70 (-0.11)

(10.45)

3596 40
(14.09)

3458 41
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3248

-0.74) 3037 44 46 100
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o EIGHT HEATER MODULE CONFIGURATION (.13)

o STEADY STATE ANALYSIS
o MODULES 36 AND 37 ARE WATER COOLED ABSORBERS
o TEMPERATURES ARE SHOWN IN DEGREES FAHRENHEIT
o HEAT FLUX (IN PARENTHESES) IS SHOWN IN BTU/FT 2-SEC

PREDICTED LEADING EDGE HEATING ARRAY TEMPERATURE AND
HEAT FLUX DISTRIBUTIONS FOR A 3500oF PEAK LEADING EDGE TEMPERATURE

FIGURE 4-8

In all thermal analyses that have been performed, the emittance of the graph-

ite elements was assumed to be 0.9. Figure 4-9 shows the emittance of the graphite

element material (Speer Carbon grade 890S) is well below 0.9 at expected operating

temperatures. A comparative thermal analysis was performed using the graphite

emittance shown in Figure 4-9 to determine the effect on required element tempera-

tures. The results show a rather small change in element temperatures. Several of

the elements had a temperature change of less than one degree Fahrenheit. The

largest temperature increase required was for Node 40 where the element temperature

was 290 F higher (36250 F compared to 35960 F) than when the emittance was assumed to

be 0.9.
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REFERENCE: NASA CR-111841
0.9
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w 0.7

I--

S0.6

0.5

0.4
2000 2400 2800 3200 3600 4000 4400 4800 5200 5600

TEMPERATURE - OF

TOTAL NORMAL EMITTANCE - 890S GRAPHITE
FIGURE 4-9

A reasonable temperature distribution around the leading edge can be achieved

using eight heater modules and two large absorbers. The absorber modules can be

composed of smaller, standard size modules and achieve the same temperature distri-

bution. Heat transfer analyses were also performed to correlate preliminary testing

and testing of the prototype heater module.
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5.0 PRELIMINARY EXPERIMENTAL EVALUATION

Early in the program, preliminary arcing studies were conducted using an

existing development graphite heater of similar geometry to the leading edge heater

module (described in Section 6). This testing led to an investigation of instru-

mentation techniques pertaining to operation and development of high temperature

heaters. A study was performed to improve the performance of graphite heaters

by evaluating various coatings for the reflector.

5.1 ARC INVESTIGATION TEST.

5.1.1 Objective. The arc investigation test was initiated early in the pro-

gram; its objective was to observe for arcing the heating of a representative test

specimen to 3500*F using a representative heater operated at 100-115 volts and 0.5

to 10 torr. These tests were very valuable in understanding heater operation at

high temperature, identifying the required instrumentation and facilitating

expeditious testing of the prototype module (described later).

5.1.2 Test Setup. The arc test setup, shown in Figure 5-1, consisted of an

existing development graphite heater module, (Figure 5-2), a test article, an

ignitron power controller, a 4:1 stepdown transformer, and a vacuum chamber. The

heater had geometry similar to the leading edge heater (described in Section 6)

and was used for the arc investigations at 2500*F peak temperature on Contract

NAS9-12570. The test article consisted of a 0.25-inch thick graphite plate backed

by three 0.25-inch layers of graphite felt. A water-cooled plate behind the felt

absorbed all transmitted energy. Because of the relatively straightforward

objective of the test, only rudimentary instrumentation was installed initially.

5.1.3 Results. In spite of the apparent simplicity of the proposed test, the

first run was practically a catastrophe because the 80 KW being dissipated heated

the test specimen apparently to only slightly over 3000
0F and an arc was experienced

at 10 torr which damaged the setup. Along with this, two independent methods of

measuring the specimen temperature yielded remarkably different results, about

300 0F difference. The heater assembly was repaired and additional instrumentation

was installed in an attempt to determine the system heat balance; however, because

of the rudimentary nature of the test, the heat balance was not achieved, the speci-

men temperature could not be accurately determined, and persistent arcing continued

to mask post-test analyses. At this point testing was stopped. The obvious pro-

blems along with some possible reasons for their existence were categorized and are

listed as follows:
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WATER COOLED
ELECTRICAL WIRES

TEST ARTICLE
WATER
INLET-

OPTICAL PYROMETER

VACUUM CHAMBER DOOR

AND PLATFORM

DEVELOPMENT GRAPHITE HEATER UNIT

PRELIMINARY EVALUATION TEST SETUP
(Development Heater Unit)

FIGURE 5-1

(1) Specimen temperature achieved at a given power setting lower than

anticipated.

o Inaccuracy in temperature measurement

o Inaccuracy of power measurement

o Power lost to things other than the specimen

o Lack of precision in input power calculations

o Specimen power absorption larger than anticipated.

(2) Heat balance not achieved

o Inaccuracy of power measurment

o Inaccuracy of water temperature change measurement
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HEATER ELEMENTS

SIDE REFLECTOR

END REFLECTOR

DEVELOPMENT HEATER MODULE UNIT

FIGURE 5-2

o Inaccuracy of water flow measurement

o Electrical losses not accounted for

o Unaccounted for heat leaks.

(3) Arcing

o High element temperature causing smoke and arcing

o Low pressure coupled with high element temperature

o Degraded setup, i.e., water leaks, carbon tracks, arc marks, etc.

From the above results it was clear that to successfully operate the leading edge

heater and to determine its performance at temperatures up to 3500
0 F, it would be

necessary to have a carefully assembled and instrumented test setup. This was

done with the development heater module while the leading edge prototype heater

was being fabricated (Section 6.0). The upgraded instrumentation is described

in the next section.

5.2 INSTRUMENTATION TECHNIQUES.

5.2.1 Objectives. In view of the results achieved in the arc investigation

tests, the primary objective of this testing was to develop instrumentation and

techniques capable of measuring the parameters of interest with sufficient
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accuracy and repeatability to obtain generally consistent results. Specifically,

it was desired to achieve a heat balance, consistent specimen and element tempera-

tures, and a test capability for trouble-free evaluation of the leading edge proto-

type heater performance.

5.2.2 Test Setup. The basic test setup was the same as for the arc investi-

gation tests, shown in Figures 5-1 and 5-2, except that the heater assembly was

carefully refurbished to eliminate the sources of spurious arcing. The o-ring seals

in the heater assembly were replaced to stop water seepage. All electrical contact

surfaces along the current path were cleaned to reduce extraneous power losses. The

heater reflectors were cleaned and all rough edges were smoothed to eliminate sharp

protrusions which might promote arcing. All evidence of previous arcing, such as

carbon deposits and arc "tracks", was carefully removed with abrasive cloth and sol-

vents. In addition, it was decided to operate the heater at less than its maximum

possible power to further minimize the possibility of arcing. The test article was

modified to minimize the heat leak by adding more insulation, reducing the edge

conduction, and isolating the mounting from the cooled heat sink. To eliminate

unaccounted for electrical losses from the input power determination, the voltage

tap was installed directly on the heater terminals and the secondary current was

measured. True RMS meters indicating the voltage and current were used to eliminate

any effects caused by the ignitron. Water flowmeters replaced the prerun flow

calibration used previously and water temperature rise was measured using sheathed

differential thermocouples mounted in direct contact with the water, which increased

AT accuracy. A pair of optical pyrometers of different design were employed with

the capability of viewing either the specimen or the elements through a hole in

the bottom reflector via a mirror and a window in the vacuum chamber. Further, a

tungsten-rhenium thermocouple was installed in the test article by drilling a hole

into the edge of the carbon plate.

5.2.3 Results. After the setup and instrumentation was completed, testing was

resumed and the power level was stepped up gradually until a specimen temperature

of about 30000 F was achieved with the power level at about 47 KW. No arcs were

experienced during any of the runs, which were made at a chamber pressure of 50

torr, and utilized a maximum voltage of 80 volts. Although the optics and various

other phenomena caused an uncertainty in the pyrometer measurements of up to 100 0F,

the two pyrometers produced identical temperatures which were repeated on succeeding

runs. The power absorbed by the cooling water matched the input electrical power

within 2%.
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It was concluded after this series of tests that the test setup was ready for

performance evaluation of the prototype heater module.

5.3 REFLECTOR EVALUATION. As part of the preliminary evaluation the effects of

various different reflector coatings were examined to determine if the performance of

the heater could be increased. Commercial chrome plating of reflectorshas been

used on all MDC graphite heaters up to this time because of the economics of appli-

cation, the durability, and the ease of cleaning. To achieve the highest possible

element and specimen temperature for a given power setting, a reflector coating with

a high reflectance in the wavelength.band of the element emission is desirable.

Several metals and nonmetallic diffuse coatings have spectral reflectances higher

than chrome in the near infrared. To evaluate the possible improved performance of

a higher reflectance coating, two readily available and easily applied materials were

considered for comparison with the chrome. These were: Eastman 6080 white reflective

paint and gold coated tape (Y91-84A, gold film deposited on 1 mil Kapton with 2 mils

acrylic adhesive).

5.3.1 Reflector Test Results. The reflectors of the development module were

coated with these materials and a series of heater runs was performed. Figure 5-3

is a summary of the element and specimen temperatures at several power levels with

the chrome, painted,and gold tape reflector coatings. It can be seen that the

white reflective paint exhibits poorer performance than the chrome until the highest

power point. This is not considered unusual since this paint has extremely high

reflectance in the visible and near infrared but becomes nearly a total absorber

at wavelengths beyond 2.4 microns. The gold tape, on the other hand, demonstrated

vastly superior performance when compared to the chrome as shown by the 60 volt

level where the specimen temperature with the gold was 31020 F and with the chrome

was 2515 0F. At the 70 volt condition a specimen temperature of 3239 0F was obtained

before the gold tape deteriorated and the test had to be terminated. This deterior-

ation was expected because of the relatively low thermal conductivity of the Kapton

film and the 4500F limit on the acrylic adhesive causing the tape to overheat and

to bubble and summarily perish. This condition can be rectified by plating the

gold directly onto the cooled reflector. Not only does the gold coating increase

specimen temperature, but less power is required and hence less cooling water for

a given test program. Candidate methods for applying gold to the reflector are

discussed in Section 5.3.3. As a result of this investigation we feel strongly

that the heater modules in the full heating array should have gold coated reflectors.

The reflectors for the prototype module (discussed in Section 6.0) had already been
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REFLECTOR REFLECTOR HEATELEMENT ELEMENT REFLECTOR REFLECTOR HEAT ELEMENT SPECIMEN
REFLECTOR POTENTIAL POWER COOLING WATER COOLING WATER ABSORBED BY TEMPERATURE TEMPERATURE

COATING FLOW RATE DELTA TEMP REFLECTORS T (F) (OF)
(VOLTS) (BTU/SEC) (LB/SEC) (oF) (BTU/SEC)

CHROME 50 18.8 1.12 16 17.9 2485 2265
60 25.9 1.10 23 25.3 2710 2515
70 35.7 112 31 34.8 2946 2725
80 44.5 1.13 39 44.0 3130 2907

EASTMAN 50 17.8 1.12 16.5 18.5 2334 2080
6080 60 24.8 1.13 22 24.8 2630 2380

REFLECTIVE 70 32.6 1.15 28 32.2 2895 2665
PAINT 80 41.6 1.13 36 40.6 3141 2907

GOLD 50 15.8 - - - 2907 2830

COATED TAPE 60 21.75 - - - 3170 3102

(Y91-84A) 70 26.7 - 3239

(1) DEVELOPMENT HEATER MODULE

REFLECTOR TEST RESULTS
FIGURE 5-3

chrome plated at this point in the program and schedules did not permit recoating.

5.3.2 Analytical Studies of Reflectance on Heater Performance. A thermal

analysis was performed to predict heater element and test specimen temperatures

for the 4.5 inch x 26 inch development heater used in the preliminary evaluation

tests. The results of the analysis emphasize the importance of the reflectance of

the reflectors on heater power requirements. When the heater modules are operated

at high temperatures, outgassing products from the elements and/or test article form

deposits on the reflective surfaces of the heater. This, in turn, may affect the

reflectance of that surface and consequently the required power. The analytical pre-

dictions were used in conjunction with the test results (Figure 5-3) to estimate the

effective reflectance of the three reflector coatings during heater operation.

The thermal analysis utilized a three-dimensional thermal model (designated

model B) consisting of 9 reflector nodes, a single heater element node, 1 test

specimen node, and 12 radiosity nodes. The reflector surfaces form five sides of

a box 26 in. long, 4.5 in. wide, and 3 in. high. The test specimen is represented

by a surface 4.5 in. x 26 in. which forms the sixth side of the box. The heater

elements are represented by a surface inside the box located 2 in. from and paral-

lel to the test specimen. The assumption was made that the test specimen was

adiabatic and that the reflectors absorbed all the heater element power. Examina-
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tion of the heater power dissipated and heat absorbed by the reflectors during the

reflector evaluation tests (Figure 5-3) substantiates this assumption. The

reflectors were held to 100 0F and power was input to the node representing the

heater elements. The heater element and test specimen temperatures were then com-

puted for steady state conditions.

Figures 5-4 and 5-5 present the calculated test specimen and element tempera-

tures, respectively, as a function of heater element power and reflector reflec-

tance for the 4.5 in. x 26 in. development heater. It can be seen that significantly

more power is required to produce a given test specimen or element temperature as

the reflector reflectance decreases. Figures 5-6 and 5-7 present the analytical

results in a format which allows the effective reflectance of the three reflector

coatings to be estimated from the test results. The effective reflectance of the

chrome and reflective paint ranges between 0.60 and 0.70 based upon the reflector

test results. It can be seen that the reflective paint becomes a better reflector

as the temperature increases. The gold had a high effective reflectance (0.86)

which was the reason the higher specimen temperatures were obtained using gold

coated reflectors.

The effective reflectance of the reflectors used to calculate test specimen

and element temperatures presented in Figures 5-4 through 5-7 for the 4.5 inch x

26 inch development heater, were also applied to the new prototype being assembled.

Therefore, the estimated power requirement for the new prototvDe heater was bARed

upon its configuration and the effective reflectance values presented here.

The effective reflectances thus obtained are a correlation between the

measured data for the development heater and a particular computer model, which

had single nodes and heater elements, and the test article. A different effective

reflectance was obtained (Section 6.3) for the prototype module using a more

sophisticated uniformity thermal model.

5.3.3 Gold Coating - Methods and Reflectance Measurements. Since testing

and analytical studies have shown that gold coated reflectors can markedly improve

the performance of a graphite radiant heater, the methods of applying a gold coating

were investigated along with the measurement of the spectral reflectance of the

coated specimens.

The most obvious way to gold coat a reflector is, of course, electroplating,

but, because of the reflector size (up to 40 inches long), only a few electroplating

firms are suitably equipped to gold plate reflectors. The quality and reflectance
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PREDICTED TEST SPECIMEN TEMPERATURES FOR 4.5" x 26" DEVELOPMENT HEATER

FIGURE 5-4

of the electrolytic gold is dependent on application technique and polishing of a

suitable substrate on the copper reflectors.

Another popular method of gold coating is by vacuum deposition using an elec-

tron beam source. This is a standard bell-jar procedure which can be performed in

the McDonnell Douglas Corporation (MDC) Laboratories, and the coating can be

applied directly over the chrome plated polished reflectors. However, the size of

30

MCDONNELL DOUGLAS ASTRONAUTICS COMPANV EAST



HIGH TEMPERATURE MDC E0731
LEADING EDGE HEATING ARRAY - PHASE I 5 DECEMBER 1972

o STEADY STATE ANALYSIS (MODEL B) TEST
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FIGURE 5-5,

the reflectors requires the use of a larger vacuum chamber and either a traversing

source or a multi-source arrangement not available in MDC Laboratories. Further,

because the vacuum deposited gold coating is so thin (0.15 Am) and soft, an over-

coating of a dielectric material such as silicon dioxide or magnesium fluoride

must be deposited to protect the gold form physical damage during cleaning operation;

in service.

Heat conversion gold is another method of applying a gold coating which

involves painting the surface with a solution of gold salt and then heating the

piece to reduce the salts and leave the gold. This method requires three applica-

tions to achieve a high reflectance as substantiated by reflectance measurements.

The 9500 F bake required by this method causes another potential problem. The method
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FIGURE 5-6

developed in MDC Laboratories for attaching the cooling tubes to the chrome plated

reflectors employs an oven soldering after plating the reflector to avoid damage

to the tubing during the plating and polishing operation. It is not known if the

gold plating by any method would be affected by this procedure. For electroplating

and vacuum depositing, the coating could be applied before or after soldering whereas

the conversion gold plating would have to be applied before the soldering operation

due to the lower temperature solder used.

Three reflector specimens were prepared for spectral reflectance measurements,

one by vacuum depositing gold onto a polished chrome plated coupon with a magnesium
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FIGURE 5-7

fluoride overcoat, a second with the three coats of heat conversion gold onto

a polished chrome plated coupon, and the third a standard polished chrome plated

coupon. The spectral reflectance measurements were made using a Beckman DK-2

Spectrophotometer and the results are presented in Figure 5-8 along with a normal-

ized 35000F black-body curve for reference purposes. This data clearly substan-

tiates the test and analytical results showing that gold coated reflectors are

better than chrome plated from a performance standpoint. The chromium has a

reflectance of 0.65, heat conversion gold has 0.86, and the vacuum deposited gold
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achieves 0.96 reflectance for the peak radiant intensity of 1.3 .m at 3500 0F.

Further investigations in techniques for achieving a gold coated reflector are

necessary before the full size heating array is assembled.

VACUUM DEPOSITED GOLD

1.0 I

0.9
\ '-- HEAT CONVERSION GOLD

0.8 ' CHROMIUM PLATE

0.7

00\

"C )

SI 0.5\
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0.2
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0
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SPECTRAL REFLECTANCE OF CANDIDATE REFLECTORS FOR GRAPHITE HEATERS

FIGURE 5-8
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6.0 DESIGN AND FABRICATION OF PROTOTYPE HEATER MODULE

To meet the design goals and to verify heater performance a prototype heater

model that will constitute the basic building block of the heating array was

designed and built.

6.1 DESIGN OF PROTOTYPE MODULE. The prototype heater needed to be of suffi-

cient size to demonstrate the properties of the full size array, and to have all

the features of the full size array which might affect its performance. The basic

design was evolved from our knowledge of graphite heater design and the potential

trouble areas investigated in previous graphite heater development programs. The

succeeding paragraphs describe the approach taken to meet the design goals and the

design features incorporated in the prototype module.

6.1.1 Prototype Size. The width of the prototype evolved from two criteria:

(1) maintaining element strip width and spacing the same as proven designs in pre-

vious development programs, and (2) including enough strips to utilize one power

control channel. The prototype contained four strips .80 inches wide, with .25

inch spacing between strips, and 0.25 inch spacing between the elements and side

reflectors. This resulted in a 4.45 inch inside dimension for the module. The

over-all width of the module was determined by other criteria discussed shortly.

Because of time restrictions of Phase I and the lead time required to obtain

new elements from the vendor, a "best quess" element length of 36 inches was chosen.

This length enabled evaluation of element fragility and tension requirements to

minimize sag, while at the same time providing the basis for mapping spanwise heat

flux uniformity. The basic module configuration is 5 x 39 inch as shown pictorially

in Figure 6-1.

6.1.2 Heater Elements. The heater module employs two serpentine, two-pass

graphite heater elements similar to those used in our in-house heaters and in

heaters delivered to NASA-Langley and NASA-MSC. The elements were fabricated from

Airco Speer Grade 390S graphite. Electrical connection to the elements was made

by fitting tapered holes in the thickened ends of the graphite elements to water-

cooled copper tapered pegs brazed to the electrode end assembly (described in the

next section). The tapered connection system minimized unheated areas in the

module and does not depend on module orientation for element retention. Both ends

of the element were thickened relative to the thin heated length to facilitate

power input at the electrode end and turn-around at the expansion end.

The element thickness was determined by scaling known power requirements from

the development unit described in Section 5.0 to the new module sizes and adding
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PICTORIAL VIEW - PROTOTYPE HEATER
FIGURE 6-1

a safety factor for contingencies. The power used for calculations was 100 K4 per

module (or 25 KW per element pass). The elements are connected in parallel with a

maximum voltage of 100 volts/element delivered by 4:1 stepdown transformers. This
arrangement results in 50 volts/pass and a current requirement of 500 amperes for

a pass resistance of 0.1 ohm. Then utilizing the formula

Wt
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where, R = pass resistance

p = resistivity of graphite

L = heated length

W - pass width , and

t = element thickness 9

an element thickness of 0.125 inches was determined. The shape of the heater ele-

ment can be seen in Figure 6-2.

6.1.3 Electrode End Design. Minimizing the unheated area at both ends of the

heater was of primary concern. The design goal was to expand the heater array

eventually to accept a 10 foot test article with a minimum of heat flux nonuniformity

This requirement prompted a new end block design which was essentially a turned-

under version of the ones on the heater delivered previously to NASA, MSC. This

makes the unit more compact. Figure 6-2 shows this arrangement and Figure 6-3

contains the design details of electrode end assembly.

Brazed atop the end block is the water-cooled copper tapered peg which retains

one end of the heater element and transmits the power to the element. Since the

elements were connected in parallel, the center end block is siamese, with two

tapered pegs making a common connection between the two elements.

Brass rods .50 inches in diameter are soldered into sockets in each end block.

These rods pass through the brass end manifolds, and copper bus plates are clamped

to the ends. The end blocks and rods are electrically insulated from the heater

structure by ceramic spacers and phenolic sleeves. O-rings fitted in grooves

sealed the water passages between the components. A constant clamping force

is exerted on the 0-ring seals by a wave spring washer held in place with a snap

retaining ring.

Figure 6-3 and 6-4 show the bus plate detail. The bus plates are positioned

beneath the modules which increases its compactness. Two copper bus plates

connect the heater elements in parallel and supply the two connecting points for

water-cooled power leads. A phenolic spacer bolted to the bus plates maintains

mechanical separation for electrical reasons and adds rigidity to the assembly.
6.1.4 Expansion End Design. A method was needed to apply a tensile load to

the elements to prevent excessive sagging and also to take up the thermal expansion

of the elements as they heat up. The first design attempt is shown in Figure 6-5.

This sliding block arrangement was an adaptation of the tension system used in

previous graphite heaters. The turned-under end block, however, prevented the
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applied and reactive forces from being coaxial. This resulted in binding in the

demonstration model and, eventually, to discarding this design.

The successful design is shown in Figure 6-6. This design consists of a

graphite lever pinned at the bottom to the water-cooled brass end block through a

protruding ear. The tension force is supplied by a compression spring between

the lever and end block. A guide rod and snap ring kept the assembly in place.

As on the electrode end, electrical insulation was provided by a ceramic

insulator between the end block and the water manifold and a phenolic sleeve and

washer around the clamping stud. A nut on the clamping stud was used to clamp the

0-rings sealing the wateL passages between the components.

The top of the graphite lever has a lip to retain the element and keep it

properly located.

6.1.5 Water Manifolding System. The water manifolding system supplies

water to the entire module through one inlet and one outlet connection. Figure

6-2 shows the manifolding system. The two manifold tubes served a dual purpose.

They fed water to the end water manifolds and all the reflectors while also

providing the structural backbone of the module. The module mounting plates were

welded to these tubes.

The reflectors are supplied cooling water from the manifold tubes by indi-

vidual connections welded to the tubes for each reflector plate. The end-block

manifolds were brazed to the tube ends and provided a rigid structure for fastening

the reflectors.

6.1.6 Reflectors. Chrome plated reflectors were used to contain the radiated

energy and reflect it back to the test article. All the reflectors were mounted

to the brass end-block manifolds and formed a box with only the area above the

elements open for radiating to the test article. The shape of the enclosure thus

formed can be seen in Figure 6-2. This box arrangement offers an additional advan-

tage for the full size array which is discussed in Section 8.8.

A gas spray bar was incorporated in one of the side reflectors to provide a

means of impinging cold gas on the test article surface to cool it. The spray bar

was located beneath a lip provided on one side reflector to interlock with the

adjacent heater module in the full-size array. Interlocking prevents escape of

radiated energy between adjacent modules. The spray bar and interlock can be seen

in Figure 6-4.
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FINALIZED EXPANSION END DESIGN DETAILS
FIGURE 6-(

Water cooling tubes were soldered to the outside of the reflectors to remove

the energy absorbed by the reflectors. These tubes were arranged so that they

nested with the cooling tubes on the adjacent module. This reduced the width of

the unheated streps between modules. This nesting feature was used not only on thE

side reflectors but also on the ends, so that entire heating arrays could be nestec
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end-to-end. Although only one prototype module was built, the tubes were arranged

properly to test the cooling capability of the nesting configuration.

6.2 FABRICATION OF PROTOTYPE MODULE. The majority of the prototype fabrica-

tion was done in the MDC Electro-Mechanical Development Laboratory. Figures 6-7

to 6-9 show the module components and assemblies during various stages of fabrica-

tion.

EXPANSION END ASSEMBLY

ELECTRODE BLOCK
ASSEMBLIES

TERMINAL PLATES

EXPANSION END, ELECTRODE BLOCKS AND BUS
PLATES FOR PROTOTYPE HEATER MODULE

FIGURE 6-7
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DURING FABRICATION

FIGURE 6-8

As the heater was assembled, provisions were made for part of the instrumen-

tation to be used during prototype evaluation testing. A hole was cut in the

bottom reflector to provide an optical path for optical pyrometer temperature

measurements. The hole was located so that both elements and test article surfaces

could be seen. Also, mounts for two types of heat flux sensors were attached to

the bottom reflector.
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SIDE REFLECTORS AND BOTTOM REFLECTORS
ASSEMBLY AS SEEN DURING MODULE FABRICATION

FIGURE 6-9

No problems arose during heater fabrication, and standard fabrication

techniques were used. The vendor who supplies the heater elements per our design

did experience some tooling problems and element breakage during the initial phases

of fabrication. These problems were solved and the only effect was a delay in

receiving the first shipment.

6.3 PREDICTED PERFORMANCE OF THE PROTOTYPE HEATER MODULE. A thermal analysis

was performed to predict heater element and test specimen temperatures for the

5-in x 39-in prototype heater module. Temperatures were calculated for both gold

and chrome reflectors on the prototype module. An effective reflectance of 0.86

for gold reflectors was used as determined from tests. Similarly, a reflectance

of 0.65 was used for the chrome reflectors.

The thermal analysis of the prototype module utilized a three-dimensional

thermal model consisting of 9 reflector nodes, 1 heater element node, 1 test

specimen node, and 12 radiosity nodes. The reflector surfaces form five sides of

a box 37.75 inches long, 4.5 inches wide, and 2.125 inches deep. The test specimen

is represented by a surface 4.5 x 37.75 inches which forms the sixth side of the

box. The heater elements are represented by a surface inside the box located 1.25

inch from and parallel to the test specimen. The assumption was made that the test

specimen was adiabatic and that the reflectors absorbed all the heater element

power. The reflectors were held to 100 0 F and power was input to the node represen-
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ting the heater elements. The dimensions and view factors of the prototype module

were incorporated into Thermal Model "B" for the prediction. The heater element

and test specimen temperatures were then computed as a function of heater element

power for steady state conditions. The results of this analysis are presented in

Figure 6-10. A prototype heater with chrome reflectors requires approximately 2.4

times the power of a prototype heater with gold reflectors to achieve a given test

specimen temperature in the 3000-35000 F temperature range.

o STEADY STATE ANALYSIS (MODEL B)
o ADIABATIC TEST SPECIMEN
o REFLECTOR TEMPERATURE= 1000F
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7.0 PERFORMANCE TESTING OF PROTOTYPE HEATER MODULE

Only a limited amount of performance testing could be conducted with the pro-

type heater module because of a delay in element delivery and the short duration

(5 months) of the program. This section describes the test article, the test setup

and presents a discussion of the test results. The testing consisted largely of

determining the performance characteristics of the heater module at a chamber

pressure of 10 torr and investigating spanvise uniformity of the heat flux incident

upon the test article. The maximum specimen temperature achieved during this test-

ing was 30100 F at a power input of 69.4 KW. This is below the expected capabilitie:

of the module especially for gold coated reflectors; and, early in Phase 2, addi-

tional mapping of the performance of the modules should be performed to determine

its heating limits.

7.1 TEST ARTICLE. The test article assembly designed to test the prototype

heater module is shown schematically in Figure 7-1 and pictorially in Figures 7-2

and 7-3. It consists basically of two sections of ribbed carbon-carbon lay up

cut from a MDC prototype leading edge and mounted in a water-cooled support struc-

ture. Two ribs of each carbon-carbon section extend through slots cut in the top

support plate and are held in place with carbon pegs. The amount of insulation

placed between the carbon-carbon and the chrome plated inner surfaces of the

water-cooled plates can be varied to effect essentially any desired specimen heat

transfer rate.

The instrumentation includes a pair of tungsten-rhenium thermocouples, one

of which is against the inside surface of the carbon-carbon and the other in a

small recess drilled into the inside surface of the carbon-carbon. Two water-

cooled calorimeters mounted to the top support plate and extending down through

the carbon-carbon section are used to map the heat flux uniformity in the axial

direction. To obtain a value for the total amount of heat absorbed by the test

article, the support structure coolant flow rate and temperature rise were measured.

7.2 TEST SETUP. The prototype graphite heater module was set up on the mov-

able door of a 5.5 foot diameter vacuum chamber for the performance tests. Several

views of the heater with and without the test article during the setup are shown

in Figure 7-4 and the final assembly and overall view of the test and chamber are

shown in Figure 7-5.

In addition to the aforementioned instrumentation of the test article, the

prototype heater was instrumented to allow measurement of coolant flow and tempera-

ture change, voltage and current, and heat flux sensed by calorimeters mounted in

TLDNNG PAGE BJ4 NOT I
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-t

VIEWS OF THE PROTOTYPE LEADING EDGE HEATER MODULE TEST SETUP
FIGURE 7-4
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normal performance during the shake-down tests was that one element ran consider-

ably hotter than the other when the same voltage was applied to each. Examination of

the elements showed that although they were dimensionally identical, their resis-

tance was different, possibly due to difference in material densities or grain

orientation. The condition was eliminated by selecting elements with matched

resistances.

After the initial shake-down runs, a series of tests was conducted to determine

the basic pe rformance characteristics of the heater assembly. The voltage was

increased in 10 volt steps until 80 volts had been reached at which setting the

corrected specimen temperature measured with the optical pyrometer was 30100F.

This was done in two series of runs because of a film that formed on the reflectors

caused by outgassing at high temperature of the binder of the test article insula-

tion. Simple cleaning restored the reflectors and no further difficulty was

experienced after the insulation had been thoroughly "cooked out." A summary of

the reduced data for these test runs is presented in Figure 7-6.

Specimen and element temperatures as a function of input power are shown in

Figure 7-7 for both predicted (thermal model "B") and measured data. The informa-

tion in the figure is for chrome plated reflectors, and constant reflectance (0.65)

was used for calculating temperatures at all wavelengths. The measured tempera-

tures have a spread of up to 150*F for some power settings, part of which can be

attributed to a 100*F uncertainty in temperature measurement caused by such things

as emissivity uncertainties, emittance enhancement, wavelength considerations and

optical losses. It can be seen in this figure, that the trend is for the tempera-

ture to be higher than predicted at low power settings and lower than predicted at

high power settings. This effect is most likely due to modeling and dependence of

the reflectance of the chrome surface on wave length. Additional thermal modeling

is described in Section 7.4.1.

In addition to these "set point" runs, the prototype heater was operated

using the ignitron controller feedback control system to demonstrate the feasibi-

lity of this type of control. Two feedback elements were implemented: the heat

flux sensor in the bottom reflector of the heater and one of the tungsten-rhenium

thermocouples in the test article. Both systems operated satisfactorily, thereby

demonstrating that the heater can be controlled using either a heat flux sensor or

a thermocouple. For these demonstration runs, ramp type functions (Figures 7-8 and
7-9) were programmed using a "Data-Trak."
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IN OUT

WATER COOLED
SPECIMEN HOLDER

CARBON/CARBON
T1  SPECIMEN

HEATER ELEMENT (1) TEMPERATURE CORRECTED FOR EMITTANCE PER NASA CR-111841

HEATGNAL LMN (2) TEMPERATURE CORRECTED FOR EMITTANCE OF 0.90
1IA OAGUT ( (3) NOT CORRECTED FOR EMITTANCE (E = 0.825) COATING

IN OUT
CALORIMETER 1 2 PYROMETER VIEWING PORT

HEATER POWER INPUT HEATER COOLING SPECIMEN COOLING U ACCOUNTED TEMPERATURES (OF) CALORIMETERS(3)
TEST T AL U 1 }OU TE CALORIMETERS(3)

TEST VOLTS AMPS POWER POWER WATER AT POWER WATER AT POWER TOTAL FOR POWER ELEMENT SPECIMEN SPECIMEN SPECIMEN (BTU/FT 2SEC)

NO. PRESSURE (KW) (BTU/SEC) FLOW (F) (BTU/SEC) FLOW (F) (BTU/SE COOLING (PYRO) (PYRO) BACKSIDE RECESS
(TORR) (LB/SEC) LB/SEC) (BTU/SEC) % (1) (2) T2  T1  q1 42

8 10 29.5 390 11.5 10.9 1.45 6.47 9.4 0.433 2.16 0.9 10.3 !0.6 5.5 2016 1600 1745 15.4 116.0

9 40.0 503 20.2 19.1 . 1.47 11.65 17.1 0.433 3.88 1.7 18.8 10.3 1.6 2353 2167 1925 2040 25.4 25.5

11 40 487 19.5 18.5 1.450 11.21 16.3 0.425 3.88 1.65 17.95 0.5 2.8 2353 2176 1975 2055 26.8 26.0

12 40.2 485 19.5 18.5 1.433 ; 11.21 16.1 0.425 4.74 2.01 18.01 10.5 2.8 2419 2252 2043 2125 29.4 128.4

13 50.3 584 29.4 27.9 1.450 17.25 25.0 0.425 5.60 2.38 27.38 i0.5 1.8 2647 2469 2270 2350 41.6 '40.0

14 60 675 40.5 38.4 1.470 23.70 34.8 0.417 7.32 3.05 37.85 0.5 1.3 2849 2625 2465 2550 52.7 50.5

15 60 678 40.7 38.6 1.470 22.83 33.6 0.417 6.89 2.87 36.47 2.1 5.8 2907 2708 2545 2625 55.5 53.7

16 70 775 54.3 51.5 1.470 31.00 45.5 0.417 9.05 3.77 49.27 12.2 4.5 3082 2872 2710 2790 68.7 66.3

17 80 868 69.4 65.8 1.474 40.10 59.0 0.433 11.21 4.86 63.86 1.9 3.0 3230 3010 2820 2915 82.2 79.4

20 50 595 29.8 28.3 1.467 15.95 23.4 0.500 6.47 3.24 26.64 1.7 6.4 2625 2421 2275 2355

21 60 691 41.5 39.4 1.467 22.40 32.8 0.500 8.62 4.31 37.11 2.3 6.2 2838 2635 2480 2560

22 70 785 55.0 52.1 1.467 29.80 43.6 0.483 9.92 4.80 48.40 3.8 7.9 3033 2782 2650 2750

22 50 597 29.8 28.3 1.432 15.95 22.8 0.466 6.90 3.22 26.02 2.3 8.8 2666 2469 2315 2400

23 60 687 41.2 39.1 1.418 23.30 33.0 0.466 8.62 4.02 37.02 12.1 5.7 2888 2700 2535 2625

24 70 782 54.7 51.9 1.450 30.20 43.7 0.483 10.79 5.21 48.91 3.0 6.1 3102 2862 2715 2800

25 50 591 29.5 28.0 1.432 15.95 22.8 0.483 7.34 3.54 26.34 1.7 6.4 2666 2487 2320 2410

26 60 687 41.2 39.1 1.418 22.40 31.7 0.466 9.50 4.43 36.13 )3.0 8.3 2888 2700 2540 2640

27 70 780 54.6 51.8 1.432 29.80 42.6 0.466 11.22 5.24 49.84 2.0 4.0 3082 2872 2720 2810

28 50 589 29.4 27.9 1.400 16.39 22.9 0.466 7.33 3.42 26.32 1.6 6.1 2666 2497 2300 2395

29 60 680 40.8 38.7 1.400 23.80 33.3 0.449 9.50 4.26 37.56 t1.1 2.9 2907 2723 2535 2635

30 70 772 54.0 51.2 1.432 30.60 43.8 0.466 11.22 5.24 49.04 2.2 14.5 3112 2916 2725 2825

31 50 587 29.3 27.8 1.432 15.53 22.2 0.466 7.34 3.42 25.62 2.2 8.6 2705 2533 2340 2445

32 60 682 41.0 38.8 1.432 22.00 31.5 0.466 9.50 4.43 35.93 2.9 8.1 2916 2735 2550 2650

33 10 70 772 54.0 51.2 1.432 29.80 42.6 0.466 11.22 5.24 47.84 3.4 7.1 3131 2916 2740 2840

OPERATIONAL DATA FOR 5.0 x 39.0 INCH PROTOTYPE HEATER MODULE
FIGURE 7-6
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Uniformity of heat flux at the specimen plane in the span direction was inves-

tigated in the following manner: the test article with the calorimeters installed

was positioned over the heater which was then operated at three stabilized power

levels and the calorimeter readings were recorded. By moving the test article

relative to the heater module in subsequent sets of runs, it was possible to map

heat flux along the length of the module. The results of this investigation are

tabulated in Figure 7-10 and compared with the analytical predictions in Section

7.4.2. As seen in this figure, the heat flux becomes more uniform with increasing

power. This is because, as the power is increased, conduction down the element to

the cooled end block becomes less significant than the radiative heating to the test

article.

DISTANCE FROM MODULE % DEVIATION FROM MAXIMUM HEAT FLUX
TOWARD ELECTRODE

(IN.) 29 KW 41 KW 54 KW

3 0 0 0
5.2 0 0 0
7.2 0 0 0

11 5.9 5.0 4.9
13 16.6 14.4 12.4
15 43.4 41.0 36.6

VARIATION OF HEAT FLUX UNIFORMITY WITH POWER LEVEL
FIGURE 7-10

Contained in Figure 7-6 is an energy balance for each test run. In the heat

flux uniformity runs (20 to 33), there seemed to be an excess of unaccounted for

heat with no apparent pattern to explain it, (various from 2.9 to 8.8%). Earlier

runs appeared to have a smaller amount of unaccounted for power. This was most

likely due to the longer runs used initially and hence steady state heat transfer

conditions were more nearly achieved.

7.4 HEAT FLUX UNIFORMITY. Both analytical and experimental heat flux dis-

tributions along the span of the prototype module were determined. It would be

desirable from the TPS evaluation view point to test with no gradients in heat

flux at all. However, due to view factors and the physical close out of a heating

unit at its ends, the heat flux drops off. Detailed thermal modeling of the pro-

totype module was performed to predict performance, to correlate measured data and

to better understand system characteristics at higher power settings.
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7.4.1 Calculated Uniformity. The thermal model (designated Model "C")

used to compute temperature and heat flux distribution along the span of the pro-

totype module was much more detailed than the Model "B" (Section 5.3.2). Instead

of characterizing the graphite heater elements by a single node, the heater element

was divided into 19 nodes (Figure 7-11); and the expansion and electrode end assem-

blies were modeled. The test article was also subdivided into 15 nodes instead of

a single node. Also nodes were spaced closer together near the ends of the test

article when gradients were expected. A system of 38 radiosity nodes was employed

to describe radiant exchange (including reflection) between the heater elements,

test article, and reflectors (bottom, sides and ends). The electrode peg (or pin)

through the elements as well as the reflectors, and other water-cooled components

were maintained at 1000 F. A heat generation term was assigned to each heater element

node according to its volume and based on a current in the element and the electri-

cal resistance of the graphite. For the first steady state analyses performed on the

General Heat Transfer computer program, the reflectances (PCHROME = 0.65 and

pGOLD = 0.86) obtained from the Model "B" were used. The computed temperature

distributions along elements and specimens are shown in Figure 7-12. As was

expected, using the graphite lever arm expansion end design results in more uni-

form temperatures at that end of the module compared to the electrode end where

the element is in direct contact with the water cooled pin. Also, the temperature

difference between the element and specimen is smaller for the gold reflector

than for the chrome reflector. The computed temperatures at the module center

were higher using Model "C" than using Model "B". It was concluded that this was

due to the better simulation using Model "C" which has a finer network of nodes.

A small study was then performed to determine the appropriate reflectances to

use with Model "C". Figure 7-13 shows the influence of reflectance on module

center temperatures computed using Model "C". The 25 Btu/sec heating condition

was used to reestimate the reflectances for Model "C" to achieve a correlation

with Model "B" results. The reflectance for chrome was reduced to 0.55 whereas

the reflectance for gold coating was revised downward slightly to 0.83. Figure

7-14 contains the resulting temperature distributions along the span of the module

computed using these lower reflectances.

7.4.2 Comparison of Measured and Calculated Heat Flux Uniformity. Incident

heat fluxes were measured at six locations along the span of the carbon-carbon test

article as described in Section 7.3. Tests were conducted using chrome plated
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(UPPER REFLECTOR (WATER COOLED)

........ ....... ..... ... ..... .... ............... :...,. ................... .......:. ............. ...O .............. ........ ...........

W2

TEST ARTICLE OR GUARD RADIATION EXCHANGER OR CONDUCTION THROUGH INSULATIONS
8 /-TEST ARTICLE OR GUARD

CARBON-CARBON
TEST ARTICLE

7 27 28 29 30 31 32 33 34 35 36 37 38 39

, . . . o o ...

RADIATION

5 5  4 40 
HEATER ELEMENT

6 7 8 9 10 11 12 RADIATION 13 14 15 16 17 18 19 20

2 45RTATING
1::: .. .. ........ EXPANSION2 2

b ::: ] :::::::::::--::-::-:-------------o• ...... .... .... .... ........ .... .... .... .... .... .... .... .... .... .... ............................................................. ...... __....:,":':>'"" ' I .... .... .... E..N.IO

2 . . .. WATER COOLED L....ET.EXPANSION:

END BLOCK END BLOCK

= -(WATER COOLED)

0 I  ', I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(INCHES)
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* CIRCLED NUMBERS ARE RADIOSITY NODES SPAN-WISE THERMAL MODEL OF PROTOTYPE HEATER MODULE (MODEL C)
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FIGURE 7-11
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o 5 x 39 INCH PROTOTYPE MODULE
o 3-D THERMAL ANALYSIS (MODEL C)
o 25 BTU/SEC ELEMENT POWER

- TEST SPECIMEN --= HEATER ELEMENT
TEMPERATURE TEMPERATURE

3600

3400

GOLD REFLECTORS
3200 p= 0.86

LL

S3000

S2800

2600 CHROME REFLECTORS p= 0.65

2400
p= REFLECTOR REFLECTANCE

2200

2000

-16 -12 =8 -4 0 4 8 12 16
DISTANCE FROM CENTER OF MODULE - IN.

PREDICTED SPECIMEN AND ELEMENT TEMPERATURE REFLECTANCES
DISTRIBUTION USING MODEL B

FIGURE 7-12

reflectors and test results were compared with the analytical distribution as shown

in Figure 7-15. The measured heat flux remained more uniform over the center of

the module and then dropped off more sharply near the end of the module. The cal-

culated and measured heating distributions are in good agreement, except at the end

of the unit where additional heat losses may have occurred.

Heat flux distributions along the element were computed (using Model "C") for

two power settings and for gold as well as chrome reflectors. Figure 7-16 is an

expansion of Figure 7-15 showing the additional calculated heating profiles. The

calculated heat flux uniformity increases at higher power settings similar to the

measured data. The heat flux uniformity increases still further for the more

efficient reflectors.
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e 5 x 39 INCH PROTOTYPE MODULE
e THERMAL MODEL "C"
e HEATER ELEMvENT POWER = 25 BTU/SEC GOLD COATED

3400 REFLECTORS

C 3200 HEATER SPECIMEN
ELEMENTS L,

I-

, 3000

i-

,, 2800
I--

CHROME PLATED REFLECTORS

I---S2600

2200
0.50 0.52 0.54 0.56 0.58 0.82 0.84 0.86

REFLECTANCE

EFFECT OF REFLECTOR EFFICIENCY ON ELEMENT
AND SPECIMEN TEMPERATURE

FIGURE 7-13

The uniformity thermal model (Model "C") was then used to recalculate the

emperature of the specimen and heater element as a function of heater element power.

igure 7-17 contains this information.

The heat flux comparisons described in the preceding paragraphs are at the

lectrode end of the module where the water cooled peg reduces flux uniformity more

han experienced at the expansion end. The resulting heating distribution is

kewed toward the expansion end (See Figure 7-18). The heat generation length of

he heater element for the 39-inch prototype module is 34 inches. Also shown on the

igure is the heat flux distributions for three and six-inch longer elements. The

.nformation on Figure 7-18 was used to generate Figure 7-19 which summarizes the

.xpected heat flux uniformity over various length test specimens. For the prototype

lodule (L = 34 inches), twenty-six inches of the specimen has greater than 90% heat

'lux and heat flux drops to 81.7% at the ends of a 30-inch test specimen. As can be

;een in the figure increasing the element length by six inches to L = 40, results in
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HEATER ELEMENT
TEMPERATURE

3-D THERMAL ANALYSIS (MODEL C)
ELEMENT POWER = 25 BTU/SEC - - TEST SPECIMEN

TEMPERATURE

3400

3200

GOLD REFLECTOR S

3000 3000 
p= 0.83

a 2800

- 2600

2400 CHROME REFLECTORS

p= 0.55
2200

2000

p= REFLECTOR REFLECTANCE

1800 I
-16 -12 -8 -4 0 4 8 12 16

DISTANCE FROM CENTER OF MODULE - IN.

CALCULATED TEST SPECIMEN AND HEATER ELEMENT
TEMPERATURE UNIFORMITY FOR PROTOTYPE HEATER MODULE

FIGURE 7-14

a 91% heat flux uniformity on a 30-inch specimen which exceeds the design goal of 90%.

Heater elements can be readily machined to the longer length for the full size array

and thereby achieve the design goal. On the other hand, if the uniformity goal were

reduced to 80% for a thirty-inch specimen, the present prototype unit could be used.
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LEGEND:

O 75 BTU/FT 2 - SEC MAX FLUX

A 58 BTU/FT 2 - SEC MAX FLUX

O 43 BTU/FT 2 - SEC MAX FLUX

100

THEORETICAL

3 60
u-L I

-- HEATER ELEMENT

S40

HEATED PORTION OF ELEMENT

20

-16 -12 -8 -4 0

DISTANCE FROM MODULE Q - INCHES q

PROTOTYPE MODULE HEAT FLUX UNIFORMITY
(Electrode End of Unit) FIGURE 7-15
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UPPER ENCLOSURE
ELECTRODE SPECIMEN

REFLECTOR
19.5 "

GRAPHITE ELEMENT

100

i i ; - i i 
1;

CALCULATED HEAT FLUX DISTRIBUTIONS( 1)
80 ELEMENT
80 i POWER REFLECTOR

"'' _ (BTU/SEC) (BTU/FT 2. SEC) TYPE REFLECTANCE

24.7 29.46 CHROME 0.55
SK 1 74.1 90.60 CHROME 0.55

,- I f!! 24.7 72.81 GOLD 0.83
I 74.1 223.11 GOLD 0.83

, (1) MODELC
-J -~_T 1 i I MJODEL C

wi
SiM I EASURED DATA WITH CHROME REFLECTORS

20 SHEAT FLUXED PORTION OF ELEMENT

20 .

-20 -16 -12 -8 -4 O
DISTANCE FROM MODULE CENTERLINE - INCHES

CALCULATED AND MEASURED HEAT FLUX DSTRBUTIOOS, ELECTRODE END OF

5 x 39 I8N PROTOTYPE HEATER MODULE
FIGURE 7-16
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* STEADY STATE ANALYSIS (MODEL C)
o ADIABATIC TEST SPECIMEN
e REFLECTOR TEMPERATURE = 1000F

SPECIMEN UPPER ENCLOSURE

GRAPHITE ELEMENT

5000
ELEMENT GOLD
TEMPERATURE REFLECTOR

p= 0.83

4000
CHROME

REFLECTOR

p= 0.55

D 3000

S-- SPECIMEN
TEMPERATURE

0-

S2000

1000

0
0 20 40 60 80 100

HEATER ELEMENT POWER (BTU/SEC)

I I I I I I I I I
0 20 40 60 80 100

HEATER ELEMENT POWER (KILOWATTS)

CALCULATED MIDPOINT TEMPERATURES FOR 5 x 39 INCH PROTOTYPE HEATER MODULE
FIGURE 7-17
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o GOLD REFLECTORS (p= 0.83)
o POWER INPUT OF 24.7 BTU/SEC (25.8 KW)
o MODEL C, 100 0F REFLECTORS

ELECTRODE EXPANSION
END END

4 1.0 
I 

I

0.86.1
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FIGURE 7-18

67



IGH TEMPERATURE MDC E0731
EADING EDGE HEATING ARRAY - PHASE I 5 DECEMBER 1972

* GOLD REFLECTORS (p= 0.83)
" POWER INPUT OF 24.7 BTU/SEC (25.8 KW)
* MODEL C, 100oF REFLECTORS

A L 1

1.0-

0.9
4 1:_ i

0.8 i ,
-J-

0_ L= 34 IN(CL = 72.9 BTU/FT2 SEC)

- L= 37 IN(QCL = 70.7 BTU/FT 2 SEC)

o 0 . .... .. . .

LL2

16 20 24 28 32 36 40

SPECIMEN LENGTH (INCHES)

CALCULATED SPECIMEN HEAT FLUX UNIFORMITY FOR VARIOUS SPECIMEN
AND MODULE LENGTHS

FIGURE 7-19
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8,0 DESIGN OF FULL SCALE LEADING EDGE HEATING ARRAY

The preliminary design of the full scale heating array was performed utilizing

the results from the analytical studies and.the results from the heater module

development. Configuration studies were performed and a standard module size was

incorporated along with a design of a support structure which not only accommodates

various sizes of leading edges but also provides cooling water and spray bar gas

connections for each module. The array is a complete unit with guards and endcovers

to prevent heating of the vacuum chamber which houses the unit. The quantity and

type of auxiliary equipment were determined. Heater control systems and specimen

temperature measurement systems studies were performed so as to be compatible with

the instrumentation (or lack of instrumentation) on the full size test article.

The array was designed so the unit can be expanded to test longer leading edges,

test articles requiring oxidizing atmospheres, and even ablators.

The succeeding sections describe in detail the results of the preliminary

design effort for the full scale heating array.

8.1 ARRAY CONFIGURATION STUDY. A study was conducted to determine the con-

figuration that would best satisfy the leading edge heating array requirements.

The first approach examined was the use of a minimum number of modules for testing

the 8-inch radius leading edge. The modules which make up the array are listed

below:

7 Zone I Heaters - Each 5 Inches Wide

1 Zone I Absorber - 5 Inches Wide

1 Zone II Heater - 8 Inches Wide

1 Zone II Absorber - 11 Inches Wide

The above array would provide the desired steady state temperature distribution on

the 8-inch radius leading edge. It provides 38 inches of temperature control in

Zone I and 29 inches of tdmperature control in Zone II.

The second approach studied was the use of one standard module size for test-

ing the 8-inch radius leading edge. The modules which make up this array are as

follows:

9 Heater Modules - Each 5 Inches Wide

5 Absorber Modules - Each 5 Inches Wide

This array provides the same temperature control as the first configuration but

requires only two types of modules which can, therefore, be standardized.
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A third configuration that was considered included sufficient modules to

provide temperature control for all probable temperature distributions. It is

possible that a leading edge temperature distribution would be desired which

would require heater modules in all zones. This would require 14 heater modules

5 inches wide to cover 38 inches of Zone I and 29 inches in Zone II, regardless

of the leading edge radius. In addition to these heater modules, a minimum of

five absorbers would be required. This configuration results in the following

number of modules:

14 Heater Modules - Each 5 Inches Wide

5 Absorber Modules - Each 5 Inches Wide

The major conclusions from this study are listed below:

(1) All modules should be standardized (5 inches wide) to provide inter-

changeability and versatility to the array and also to lower overall

array costs.

(2) The maximum number of modules required to test a leading edge of any

probable radius is 14.

(3) Both heater modules and absorber modules are required, and the number

of each type of module is dependent on the area heated and on the

temperature distribution desired.

(4) Nine heater modules and five absorber modules are required to provide

the desired temperature distribution on the 8-inch radius leading edge.

8.1.1 Selected Modular Concept. The modular approach to the full size heater

array offers the same advantages as do most standardized systems, namely, economy

and versatility. Economy is attained by manufacturing larger numbers of standard

parts and to a lesser extent by reducing spare parts inventory requirements. The

modular concept gives the entire array more versatility by widening the spectrum

of testing that can be accomplished. By simply changing the configuration of the

two module support plates in the support structure, heaters can be arranged to

test either airfoil shapes or flat surfaces.

8.1.2 Heater Module. The heater module consists of a standard width module

of two serpentine heater elements with two passes each. Reflective surfaces sur-

round the heater elements on all sides except one, which is directed at the test

article. The cooling water tubes are arranged so as to nest with the adjacent

modules to reduce cold lines between modules and to prevent the escape of radiated

energy. The nesting idea also applies to the end reflectors so that complete

arrays will nest end-to-end.
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8.1.3 Absorber Module. A further reduction in array costs has been effected

by designing an absorber module which is used when heat must be removed from a test

article. In other words, a heat sink is required instead of a heater. The absor-

ber module fills this requirement at a much lower cost than a heater module that

has had its elements removed and that has had a high emissivity coating applied 
to

its reflectors. For the proposed absorber module, the "guts" of the heater are

eliminated, along with the cost of close tolerance machining operations. The

absorber module is the same length and width as the heater module and incorporates

the same interlocking feature. Figure 8-1 shows the absorber configuration.

8.2 ARRAY SUPPORT STRUCTURE. The array support structure is a U-shaped

structure with the open side of the U-structure oriented upward. The structure

supports the graphite heater modules, the specimen, and all necessary guard reflec-

tors; and it incorporates the required gas and coolant manifolding.

The backbone of the basic support frame is a pair of U-shaped pipe manifolds

located so as to line up with the individual module mounting flanges. The outer

side of the U-shape contains all the coolant fittings while the inside features a

universal support plate to which the heater modules support plates are fastened.

The array is formed by bolting the individual modules to these plates around the

periphery of a leading edge-shaped cutout. The basic support frame is completed

with a steel channel structure which provides both a base and a means of support

for the specimen, guard reflectors and other necessary ancillary equipment.

Another pair of U-shaped pipe manifolds, made of smaller pipe than the coolant

manifolds, is fastened to the channel structure to provide gaseous nitrogen to

supply the gas cooling spray bars in the modules.

The leading edge test article is suspended by linkages from a roller mounted

support frame thereby permitting the specimen to be rolled out the end of the

array for easy servicing of either the specimen or the array.

Guard reflector assemblies are attached to the ends of the span by fastening

plated liquid-cooled copper plates to a steel angle frame. These assemblies and

the guard coolant supply manifolds are roller-mounted so that they may be rolled

out of the way using the same track as the test article.

Figures 8-2 through 8-7 show the preliminary design of the heating array. A

pictorial of the array is shown first to facilitate orientation of the remaining

views of the array. Figure 8-3 is the span view of the array and shows the two end
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HIGH ABSORPTIVITY COATING
ON SURFACE OF MODULE

0 MODULE MOUNTING
COOLING PLATES

WATER

GAS-COOLING
SPRAY BAR

ABSORBER MODULE

457-3389 (5 x 39 Inches)
FIGURE 8-1

covers in place. Section B-B (Figure 8-4) of this figure, shows the mounting of

individual modules, test article and edge guards as well as the support plates and

manifolds. Figure 8-5 is an end view of the array and shows the end cover used to

prevent unwanted dissipation of heat to the vacuum chamber walls. Another view of

a module in the array is shown in Figure 8-6. Figure 8-7 shows the top view of the

heater array.

8.3 WASTE HEAT REMOVAL. To prevent heating of the uncooled vacuum chamber

walls, it is necessary to provide complete shielding of the radiation from the

heater elements, the hot specimen and stray radiation emanating from any openings.

The reflector system of the individual modules (heaters or absorbers) will prevent
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I ii TEST ARTICLE

TOP
VIEW
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END
COVER

80 IN.. END VIEW
(EXTENSION
RAIL END)

70 IN.
SPA N
VIEW

39 IN.

PICTORIAL OF THE HIGH TEMPERATURE LEADING EDGE HEATIING ARRAY

457-3384 (Heater Modules Not Shown) FIGURE 8-2
73

lW=LM~MRMlELLa. s cOMRQea.AsaifV MZS7MO( c cy = a



B o EXTENSION RAILS -\

_ _ rn

rn I
...... I." m

poI

-==

. GAS SUPPLY m
MANIFOLDS

.. ,LIQUID COOLANT

/ MANIFOLDS

oI

1rr

rn-

I" L CL

00 BI 457-3390

SPAN VIEW OF HEATING ARRAY



HIGH TEMPERATURE MDC E0731
LEADING EDGE HEATING ARRAY - PHASE 1 5 DECEMBER 1972
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457-3386 (View from Extension Rail End)

FIGURE 8-5
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MODULE

GASSUPPLY
MANIFOLD

COOLING WATER SUPPLY
MANIFOLDS RETURN

SECTION A-A

SPAN VIE OF LMODULE INSTALLED IN THE ARRAY
457-3387 

FIGURE 8-6

any waste heat dissipation from within the modules themselves. The modules are

designed so that when they are placed adjacent to one another, they will interlock

and prevent escape of thermal radiation. The only other avenues for waste heat

dissipation will be between the array and the test specimen both at the ends of

the specimen and7along the span at the rear of the specimen. Radiation out the

ends is prevented by positioning rectangular liquid-cooled copper plates ("end

covers", Figure 8-5 at each end of the array support structure. The inside surface
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WATER COOLED END COVER

GAS SUPPLY COOLING WATER WATER COOLED END COVER
MANIFOLD (2) MANIFOLD (2)

EXTENSION END RAIL (2)

TOP VIEW OF HEATING ARRAY SUPPORT STRUCTURE
457-3388 FIGURE 8-7
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of these plates will be plated to minimize heat transfer as well as to enhance'the

spanwise heat flux uniformity.

Radiation out of the gaps along the span aft of Areas II and IIa is dependent

on details of the test specimen and supporting hardware and is most effectively

controlled by using batts of Dynaflex insulation bonded onto liquid cooled copper

plates. These "edge guards" will be mounted to the array support structure using

a four-link system.

As described in detail above, the vacuum chamber walls will be shielded from

both the heater array and the specimen using a series of reflectors and heat shields

which, along with the electrodes and heater element supports, are all liquid cooled

to remove the waste heat. The coolant flow rate through each module will be

tailored such that the maximum total flow through the heater assembly is 250 gpm.

This flow rate at maximum power (1 megawatt, heater capability) will result in a

coolant temperature rise of 270F which is compatible with the GFE cooling system.

This compatibility, although it is of little importance with one heater assembly.

is important when considering the future expansion to ensure a proper match between

the overall heater assembly and the GFE cooling system.

8.4 TOTAL POWER REQUIREMENT ESTIMATE. Total power requirements to test the

8-inch radius carbon-carbon leading edge were estimated. The estimate assumed that

nine heater modules with gold reflectors would be operated at sufficient power to

achieve 35000 F on the test specimen analyzed in Section 4. It was also assumed

that each module had to provide a maximum net power to the test specimen of

21 Btu/sec which is 50 percent greater than the maximum calculated net heat flux

for any one module. For this, the worst case, 600 kilowatts would be required to

test the 8-inch radius leading edge.

8.5 HEATING ARRAY CONTROL SYSTEM. A variety of ways exist to control the

individual graphite heater modules making up the heater array. These may be

divided into two general categories: surface temperature feedback and incident

radiant flux feedback. For surfaces which have adiabatic back sides and are in

radiation equilibrium with the surroundings, the two methods are equivalent.

However, for surfaces behind which significant heat transfer occurs, the surface

temperature is dependent upon the internal heat transfer as well as the imposed

environmental conditions. The proper method is to devise a system which measures

incident heat flux on the test article surface, compares it with a calculated value

for the actual conditions and causes the test apparatus to operate in a manner

which nulls out the difference.
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Control systems that were investigated are:

o Heat flux sensors in the test article

o Heat flux sensors in test article guard

o Heat flux sensors in bottom of heater module

o Thermocouples on the test article

o Radiometers in heater module

Heading the list of possible methods of controlling the individual modules in

the array is a heat flux feedback system utilizing heat flux sensors installed

in the leading edge test specimen. It is preferable to locate these sensors

in the center of the leading edge. The nonstructural tee sealing strip between

segments (Figure 8-8) is an excellent location for a set of heat flux sensors and

does not require modification of either segment of the leading edge. The width of

the leg of the tee would be locally thickened (Figure 8-9) to form a boss for the

heat flux calorimeter. This approach also requires a slight modification of the

leading edge attachment bolt, spacers and brackets. These sensors, when corrected

for the specimen emissivity, will measure the incoming power to the test specimen

from all sources including radiation, reradiation, and reflection. The output of

the sensors will be compared with a control curve derived from actual trajectories

and cause the heaters to supply a sufficient amount of power to cause the total

power from all sources to be exactly as desired. The accuracy of this method of

control is largely insensitive to reflector cleanliness, effects of reflected

radiation, and to a large extent, changes in uniformity; the requirement for an

optical system or auxiliary signal conditioning equipment is eliminated.

If installation of heat flux sensors in the leading edge test specimen is

deemed undesirable for one reason or another, the next best control method is

through the use of heat flux sensors mounted in the end guard reflectors that fill

the gap between the end of the test specimen space and the array end reflectors.

It is anticipated that these end guards will be wing leading edge shaped reflectors

constructed of plated, water-cooled copper and fastened to the array end reflectors.

These sensors will function in the control system exactly like the aforementioned

sensors but will have to be corrected for the heat flux drop-off from the center

to the end of the span and also for any uniformity changes that may occur as a

function of power setting. It is also possible that the output of these sensors

will be affected by the guard reflector induced emittance apparent enhancement of

the elements directly under the reflectors which will, therefore, result in an

output which is some function of the reflector cleanliness.
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SEALING STRIP

CALORIMETERS

LEADING EDGE SEGMENTS

LOCATING HEAT FLUX SENSORS IN THE SEALING STRIP
OF THE LEADING EDGE FIGURE 8-8

One of the simplest systems for heat flux feedback control is comprised of a

heat flux sensor installed in the bottom reflector of the individual heater module

looking at the elements from approximately the same distance as a specimen mounted

heat flux sensor. The most serious drawback of this method, aside from the need

for correcting the output for specimen emissivity and the difference in radiation

view factors is the fact that the presence of the module reflectors enhances the

apparent emissivity of the graphite elements and causes the sensor to read high.

This means that the effective "corrected calibration" of the sensor will change as

contaminants deposit on the reflectors.

A straightforward method of control which eliminates the effects of emissivity,

emittance enhancement, and reflector degradation is the use of thermocouples to

directly measure the front surface temperature of the test specimen. Despite
these advantages, this scheme is fraught with the typical thermocouple difficulties

such as response, fragility, mounting effects, conduction down the wires, short

circuits, and radiation characteristics. In addition to these normal thermocouple

problems, the need to measure temperature in excess of 2700.0 F presents another set

of complications. Thermocouple wire materials suitable for these temperatures are
exceedingly susceptible to alloying with various contaminants such as silicon and
carbon which change both the structural strength and ductility along with the
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Mounting Boss

LEADING EDGE SEGMENT

View Showing Calorimeter Installation SEALING STRIP

SUPPORT FITTING

STEEL BOLT

INSULATORS

LEADING EDGE SEGMENT

SEALING STRIP

View Showing Support Fitting Modification

CALORIMETER INSTALLATION IN LEADING EDGE SEALING STRIP
FIGURE 8-9
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thermoelectric potential. Electrical insulation at high temperature is also a

problem along with mounting and shielding techniques. One further problem with

thermcoouples is the noise generated by the chopped cycle power characteristics of

ignitron power controllers,

Another technique in an attempt to measure the specimen surface temperature to

feed back for control purposes involves the use of a narrow-angle radiometer mounted

on the back reflector of each module and viewing the surface of the specimen through

the gap between the elements. In spite of its simple concept, this method requires

the development of an optical system, and suffers from effects of specimen emissi-

vity, emissivity changes, and reflected radiation. These effects cause unknown

errors in the output which should be fairly small at steady state but are quite

large during transient heatup. In addition the sensor used put out a signal that

requires additional conditioning to be suitable for feedback and also does not pro-

duce a signal below about 14000F thereby requiring another control technique below

this temperature.

Based on the above discussion, the use of heat flux sensors installed 
in the

leading edge of the test specimen is recommended for supplying the control signal

with an over-temperature interlock shut-off system based on one of the temperature

measurement schemes. If, however, an alternate scheme is desired, a comparison of

the desired scheme with the suggested method can be made using the fully instrumen-

ted prototype heater module and carbon-carbon test specimen.

8.6 TEMPERATURE MEASUREMENT. As described in Section 8.5, there are several

methods for measuring the specimen surface temperature. This section is devoted to

investigation of an electro-optical system which views the leading edge through

apertures in the bottom of each module of the array. Hence, provisions for such a

system must be incorporated into the final design of the array. The purpose of the

investigation was to determine the feasibility and potential benefits of an optical

system, to identify areas influencing performance, and to determine the most pro-

mising system.

The investigation was confined to radiometric temperature indicating systems

which use an optical system, radiation detector, and signal processing electronics

to provide an electrical output related to the radiant energy emanating from the

specimen. An optical system based on the visual observation of the test specimen

(e.g., disappearing-filament optical pyrometer) was used satisfactorily during pro-

totype heater testing, but was discarded for the full-scale array because of the
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difficulty of obtaining optical access from outside the vacuum chamber to the many

points on the specimen, the slow sampling data rate, and the high per-test cost of

labor.

The uses and advantages of a radiometric temperature indicating system and the

influences of the measurement situation and radiometer design on system performance

are discussed in succeeding sections. Practical considerations in the application

of a radiometric system to the full-scale heater array are also discussed. Finally,

the particular radiometric system showing most promise is identified.

8.6.1 Uses and Advantages of Radiometric Temperature Indication. An ideal

radiometric temperature indicating system could perform three functions during the

test of a leading edge. It could provide an overtemperature limit to shut down the

heating array in the event of specimen overtemperature, provide specimen tempera-

tures and be used as part of a heater control system. Because of necessary compro-

mises, however, a practical radiometric system may not perform all three functions

with equal facility. For instance, the output of an accurate radiometer, uncor-

rected for outside influences of the measurement situation, (as discussed in the

next section) would not be sufficiently accurate for use in feedback control or as

a data base, yet could be satisfactorily used for conservative overtemperature

limit. Similarly, a radiometer output may be completed satisfactory as data after

appropriate correction, yet may be unsuitable for feedback array control because the

necessary corrections are too involved to be calculated in real time or because the

output may not be conditioned properly to be used in a feedback loop.

An accurate radiometric temperature indicating system provides a number of

advantages over other candidate means of determining the leading edge surface

temperatures. First of all, the system is relatively independent mechanically of

details of the test specimen internal construction, manner of support, or method

of assembly. The specimen surface is neither contacted by extraneous materials nor

is it altered in physical or thermal properties by attached instrumentation.

Stress concentrations produced by instrumentation installations and undesirable

damage to specimen coatings are avoided. Finally, a radiometer system may be

expected to function more reliably at the highest specimen temperatures anticipated

than a thermocouple system might.

Balanced against these advantages are some practical disadvantages of a radio-

metric system. First, because of the optical system, detector, and electronics

required, the cost per instrumented point on the test specimen is considerably
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greater than for thermocouples. Because of the system reuseability, however, this

disadvantage decreases as more specimens are tested. Cost, radiometer size, and

module interference problems also limit the number of instrumented points on the

test specimen.

8.6.2 Functioning of the Radiometer. This section reviews briefly some

elements of radiometer theory and the application of this theory to a test specimen,

heater module, and radiometer.

Besides the use of radiometers mounted behind the module, back reflector view-

ing the specimen through gaps between the heater elements, two other sensor

arrangements were considered and discarded. A sensor mounted in the module with a

light pipe assembly extending out nearly to contact the specimen and a sensor

suspended by water-cooled struts between the module heater elements and specimen.

Clearance, construction difficulties, and fragility problems appeared to outweigh

any advantages of the discarded arrangements.

Functioning of the Basic Radiometer. The output voltage V of a radiometer

viewing a blackbody source at temperature Tb may be written as

(1)

where G is a geometrical factor including the relationship between the source

and radiometer and the field of view characteristics of the radiometer. RA

is the spectral response of the radiometer system at wavelength X , and Nb(6Ty)

is the spectral radiance of the blackbody source at wavelength (i.e., the energy

emitted in a given direction per unit solid angle, per unit wavelength interval

centered about a , per unit projected source area in the appropriate direction).

According to the Planck radiation law

where C1 and C2 are the first and second radiation constants. Design of a radio-

meter is controlled only by the geometrical factor G and the spectral response R

Calibration of the radiometer involves experimentally determining values for these

terms or for the complete equation (1) by measuring the output voltage of the
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instrument while viewing a blackbody source of known temperature.

For example, consider a radial-gradient Garden foil heat flux sensor such as

those used in the development tests reported in section 7.3. The response R of

such a detector is essentially independent of wavelength, and the geometrical

factor is proportional to the view factor Jb-S of the source to that of the

sensor surface. Equation (1) can be simplfied in this case to

oo

Vo = c , N (T)X
c = constant (3)

substituting from equation (2) and integrating

Vo Sb-sR(cr , = +6 c -s R cr= Stefan-Boltzmann

constant

Rearranging, and calling 1/cR the sensor calibration factor ~ produces

lVe . ck-s b (5)

This is the familiar equation used to analyze heat flux sensor data.

The wavelength dependence of the radiometer response RX forms one basis for

a classification of radiometer types. If the responsivity of the instrument is

essentially independent of wavelength over all wavelengths at which there is

appreciable radiant energy, the unit may be called a total radiometer. If R X is,

because of detector characteristics and/or filtering by the optical system, non-zero

only over a nanon wavelength band, the instrument is called a brightness radiometer.

To provide accurate information from a radiometer, the instrument must main-

tain the same geometrical and response factors which were present at calibration.

It is desirable to design the radiometer to be used with the full-scale array so

that its geometrical scale factor, G, is independent of specimen to radiometer

distance. This distance independence, together with the necessity for viewing the

front surface of the specimen through gaps between module heater elements and for

viewing a relatively small spot, not a large area, on the specimen, places an upper

limit on the value of G and, hence, the maximum radiometer output voltage is a

given situation. To achieve an adequate signal to noise ratio in the output voltage
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and a reasonable lower limit on the specimen temperature, a sensitive and, probably,

narrow wavelength band detector must be chosen.

The spectral response of a radiometer, R\ , is determined chiefly by the

transmission of optical elements in the instrument, by the characteristics of the

detector, and by the electronics system which processes the detector output.

Since RA is a function of the transmission of the optical path between the

specimen and detector, contamination of the radiometer optics by products evolved

from the heaters or specimen will change the instrument calibration. The radio-

meters for the full-scale array should be designed using a positive gas purge to

sweep contaminants away from the radiometer optics. Similarly, evolved gases and

particulates in the optical path between the radiometer and an ablating specimen

will affect radiometer output in a manner which depends on R% and the spectral

absorption produced.

It is desirable that R2 be independent of the incident energy (i.e., that

the detector have linear response) and of radiometer case temperature. By suit-

ably restricting the range of energies over which the detector operates, linearity

of response is not difficult to achieve. Radiometer case temperature variations

may be compensated by electronic sensors thermally bonded to the detector or may be

eliminated by temperature controlling the case with liquid cooling or electric

heating.

Sources of radiation other than the desired test specimen can produce a radio-

meter output. In this case, the instrument output voltage is

V0 NGb,(T6) o (6)

where WEX is the radiant energy at the specified wavelength received by the

detector from all sources of extraneous radiation and KA is a factor to take

take into account the various transmission paths this radiation takes to the

detector. Stray radiation may be off-axis radiation from the heater elements which

is scattered into the detector within the radiometer; or, if the detector has

significant sensitivity at appropriate infrared wavelengths, it may be radiation

emitted by the detector surroundings within the unit. Scattered light can be

reduced by careful design and construction of the optical system. Radiation from

the detector surroundings is difficult to eliminate. Rather, the amount of radia-

tion must be maintained at some constant value by keeping the temperature of the

radiometer case constant so that the stray radiation term in equation (6) is com-

pensated for in the calibration procedure.
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Effects of Specimen Emittance. If the total normal emittance of the test

specimen is not unity, other influences on the radiometer output appear. In the

case of a freely radiating test specimen (no heater or absorber module present

and no appreciable radiative interaction with other objects in the environment)

the radiometer output would be
oo

Vo = :?.XCSX( (7)

where Csh(T s ) is the normal spectral emittance of the test specimen at tempera-

ture Ts. Tn -general, the emit-ance f nlb t is also a functionn of the angle

at which the radiation is observed; it has been assumed, however, that the angular

variation of emittance within the acceptance angle of the radiometer is negligible.

Knowing the calibration curve of radiometer output voltage versus temperature

for a blackbody, an apparent temperature Ta can be obtained from the output of the

same radiometer viewing a non-black specimen. The apparent temperature is related

to the true specimen temperature by the equation

V0 =Gj RxN6(Ta)8X = G x xxs>,C 0N6)-TT
(8)

In special cases, this equation can be simplified. For a total radiometer which

responds equally to all wavelengths at which there is significant radiation, the

equation becomes (9)

wherefs(Ts) is the total normal emittance of the specimen at temperature Ts . For

a brightness radiometer responding at essentially a single wavelength h;ke , the

true temperature is given by

I -I - e InoT
rs a  C z L[CaefT S (10)

where C2 is the second radiation constant 1.4388 cm.K. This latter equation with

eff = 665 nm is used to correct disappearing-filament optical pyrometer data to

true temperature. Note that, in general, an iterative procedure is necessary to

obtain true temperature from apparent temperature since the emittance is a function

of the true specimen temperature.

In practical circumstances, the specimen emittance may not be accurately known

or may vary unpredictably during the course of testing. If / is the fractional
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uncertainty in specimen emittance, the fractional uncertainty in true specimen

temperature for the two types of radiometers discussed above can be calculated

from equations (9) and (10). For the total radiometer

For the brightness radiometer

(12)

These relations assume that the specimen emittance is not significantly a function

of temperature over the range 6Ts. For a brightness radiometer with effective

wavelength in the visible range and for temperatures expected in carbon-carbon lead-

ing edge testing C- is of the order of 10. It can thus be seen that in this

application a brightness radiometer is less affected by emittance uncertainties

than is a total instrument. Figure 8-9 tabulates the uncertainty in true tempera-

ture indication produced in data from various types of radiometers by a 6% uncer-

tainty in emittance for a specimen having an actual true temperature of 30000F

and a wavelength and temperature independent emittance of 0.85.

TEMPERATURE UNCERTAINTY
RADIOMETER TYPE PERCENT

NARROW BAND (0.65 p m) ± 0.67

THERMOPILE (CaF 2 WINDOW) ± 2.0

THERMOPILE (PYREX WINDOW) + 1.33

SILICON SOLAR CELL ± 0.67

EFFECT RADIOMETER TYPE ON TEMPERATURE UNCERTAINTY
Figure 8-9

As can be seen from equation (12), the effect of emittance uncertainty on

brightness radiometer output decreases as the effective wavelength of the radio-

meter decreases. Shorter effective wavelength instruments are therefore advantageous

from this standpoint (pyrometers operating in the near ultraviolet are marketed

commercially) but the advantage is gained at the expense of decreased total amount

of signal (as can be seen from equation (2) for a temperature of interest and a

wavelength shorter than about 1300 nm) and of shorter temperature ranges for the

instrument. Taking the logarithmic derivative of equation (2) and divided the
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result by equation (2) yields the fractional change in radiance N for a given

fractional change in temperature T b produces the relation
Tb

dNx = ca. I dT C-- CZ) dT6
NX XT I -exP(- Ca./XT) Tb Tb (13)

Cz -,
At 665 nm. and 28000 F, - = 13 so the radiance varies as a very strong

function of Tb (NOCT 3  Hence, for a given usable detector signal range,

equivalent temperature range decreases as the effective wavelength decreases.

Because geometrical constraints place maximum available signal at a premium

and because automatic range changing is complicated and expensive, the radiometer

designed for incorporation in the full-scale heater array must trade insensitivity

to emittance uncertainty for other parameters. The exact choice of effective wave-

length will depend on results of a more detailed study and on data concerning the

emittance uncertainties to be expected for actual leading edge test specimens.

Effects of Reflected Radiation. If the emittance of the test specimen is not

unity, the presence of a graphite heater module radiating to the specimen causes

a radiometer viewing the specimen to see an apparent radiance N' which depends

not only on the specimen temperature and radiative properties but also on the

heater element temperature and module radiative properties. The radiometer output

voltage can be expressed as

Vo = G R)Nsdx

where = Cs(T S) N 6 >s E ] (1NTT+

I I"/o')'( T .'] sr Nr T) N

+ _P(,(TSTo,) (Hx(T NTN)T

The second term in the apparent radiance describes the effect of the specimen

"seeing itself" reflected by a heater module having an effective hemispherical

reflectance /o0 -]-4) (the specimen emittance and reflectance in this term

should also properly be mispherical values). The third term in the apparent

radiance represents heater radiation from a body having an apparent hemispherical
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emittance C~4 and a temperature Th reflected by the specimen. Because the

second and third terms increase the apparent specimen radiance from the value

appropriate to a freely radiating specimen, the temperature indication obtained by

ignoring these terms and correcting for specimen emittance as usual will be higher

than the true value.

In the case of a carbon-carbon leading edge specimen heated by graphite heater

modules to a space shuttle flight heat flux versus time profile, the error in

radiometer temperature indication produced by ignoring reflection will be greatest

during the heat-up portion of the profile, less at steady state, and still less

during cooldown. For many purposes, e.g., for overtemperature limit control, the

conservative temperature indication obtained by ignoring reflection may be used

without significant performance degradation. Such a conservative limit alarm is

included in the radiometer system described in section 8.6.3. In the steady-state

development tests reported in section 7.3, the effects of reflected radiation were

also ignored in reducing the optical pyrometer data since a rough calculation

indicated such effects produced less than a 3% change in temperatures and since

the necessary radiative properties of the dummy test specimen were unavailable.

A calculation to determine the magnitude of the reflected radiation terms in

the apparent specimen radiance as a function of time during a complete simulated

space shuttle flight profile should be performed using the existing thermal models

of the test specimen and heater modules and using improved radiative property data.

This calculation would indicate the necessity of correcting for reflected radiation

in full-scale array tests in order to obtain the desired temperature accuracy, and

would provide approximate corrections to actual test data if other sources of such

corrections were lacking.

Corrections to be applied to radiometer data from tests on uninstrumented test

specimens might be experimentally obtained from comparison of radiometer indication

with thermocouple-measured specimen surface temperatures during a preliminary cali-

bration test of an instrumented specimen thermally similar to the uninstrumented

articles.

If heat flux sensors are installed in the leading edge sealing strip, test

data from these sensors may be used to calculate the reflected radiation corrections

to radiometer data obtained in the same test. The output voltage of a heat flux
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sensor Vhf can be written as V

O

S(T)'(T) (15)= T)Nx(T) + _/sXsP(TH) ,eXNb(T) +
where 

- P (TS)HT

I - pX(Ts ) X (T s)] Ts ) N  ( T s )

The output voltage of the heat flux sensor contains terms due to the radiating

specimen and to hPeater-spcimenp reflections just as the radiometer output voltageni --

does (note that these terms do not effect the accuracy of using the sensors for

module/control, since on

is exactly the quantity which it is desired to control as a function of time during

tests). If the necessary radiative properties are known, however, the heat flux

sensor output and the radiometer output provide two equations in the two unknown

temperatures Ts and Th . Since, in both equations, the first term is dominant

and the other terms are small corrections, a first approximation can be obtained

for Ts from equation (14) and for Th from equation (15) by ignoring reflection.

Using these approximations, the reflected corrections can be computed and new

estimates of Ts and Th obtained. Further iterations can proceed until satisfactory

values are calculated provided the values to which the process coverages are the

correct ones. The convergence properties of this correction algorithm and the

effect of inaccuracies in radiative properties on the corrections obtained should

be investigated in further study.

The correction process, if it converges properly, could be implemented in an

on-line computer to provide real-time specimen temperatures for control or for

quick-look data. Post-test, off-line computation is of course also possible. In

the case where a total radiometer is used and the emittances and reflectances may

be assumed to be independent of temperature, direction, and wavelength, no

iteration is necessary; and a simple analog computer to directly compute the

correction can be constructed. Because of the various correction options and the

dependance of option selection on the customer's particular needs and available

equipment, it is recommended that no correction processing equipment be included

in the radiometer system for the full-scale array and that only a direct radiometer

output suitable for further processing or recording be provided.
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8.6.3 Radiometric Temperature Indicating System Recommended for Full Scale

Array. The system recommended for the full scale array provides over-temperature

alarms and surface temperature measurement. The system configuration is based on

the considerations discussed above, and estimated test requirements. The system,

as presently envisioned, does not provide heater control from room temperature to

35000F because of 4000:1 energy range and the high cost of automatic switching.

The system consists of:
o One radiometer per module complete with mountihg system.
o Signal processing electronics and over-temperature alarm circuit.
o A radiometer check source.

The radiometer design or selection should be based on optimization of all the

variables affecting the output signal. The proper acceptance angle can minimize

the effect of heater element radiation while maintaining an adequate signal level.

The optic system should be arranged so that specimen to radiometer distance is not

critical. The temperature range should be 14000F to 35000F for a reasonable single

signal range. The effects of specimen emittance uncertainties and reflected

radiation should be minimized by the detector characteristics.

Provision for liquid cooling of the radiometer case with near-constant

temperature fluid would minimize thermal influences from changing sensor head

temperatures. Gas purging of the radiometer optics would reduce contamination

effects. The mount design should adequately align the detector optics without

further adjustment so the detector "sees" the specimen surface through the gaps

between the heater strips.

The signal processing electronics would accept the detector signal and provide

a buffered low-impedance output signal suitable for acquistion by a digital data

system. A presettable output limit trip circuit would provide an alarm and/or

system shut down signal for over-temperature conditions.

The radiometer check source provides the radiometer with a target of known

brightness so the radiometer output can be compared with a calibrated value. This

source can be used with the radiometer mounted in the heater to check for possible

optics contamination or derangement of other internal components of the radiometer.

MDC experience with radiometric measurements indicates the check source is necessary

for confident use of the radiometers. The functioning of the optical temperature

alarm system is shown schematically in Figure 8-10.

This is a preliminary design and additional design, breadboard buildup and

testing in conjunction with the prototype heater is necessary before the system

can be used in the full scale heating array.
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8.7 INTERFACES AND AUXILIARY EQUIPMENT. A study was made to determine

the auxiliary equipment required to test a Shuttle leading edge specimen using the

full-scale heater array. The equipment requirements are based on doing the testing

at MSC. In some instances the required quantities depend on the test configuration,

i.e., on the number of active heater modules being utilized. The tentative break-

out of GFE and contractor supplied equipment, indicated in the following list,

naturally requires concurrence by NASA-MSC. Figure 8-11 shows a schematic of

the interface reflected in this list.

8.7.1 Electrical Equipment.

(1) Ignitron Power Controllers - Research Incorporated (RI) Model 8129, 440

VAC, 400 amps max. - 1 required per heater (MSC supplied)

(2) RI "Data-trak" Function Generators - 1 unit per heater (MSC supplied)

(3) RI "Data-trak" Temperature Controllers - 1 unit per heater (MSC suDDlied)

(4) Stepdown Transformers - 480/120 VAC, 100 KVA - 1 unit per heater

(MSC supplied)

(5) Electrical cables from Ignitron power controllers to primary of

stepdown transformers, 250 amps per channel (MSC supplied)

(6) Water-cooled wires from secondary of stepdown transformers to vacuum

chamber feed-throughs, 1000 amps per wire, 2 wires per heater (MDAC-E

supplied)

(7) Water-cooled wires from vacuum chamber feed-through to heater, 1000

amps per wire, 2 wires per heater (MDAC-E supplied)

8.7.2 Vacuum Equipment.

(1) Ten foot diameter vacuum chamber (MSC supplied)

(2) Chamber pumping system (MSC supplied)

(3) Chamber pressure readout equipment and controls (MSC supplied)

(4) Instrumentation feed-throughs (MSC supplied)

a. Control feedback

b. Temperature monitors

c. Voltage monitors

d. Coolant interlock controls

(5) Coolant feed-throughs, 250 gpm supply and drain (MSC supplied)

(6) Electrical feed-throughs 1000 amps max, 2 per heater (MSC supplied)

(7) Inert gas feed-throughs, 2 required - one for spray bar gas,

one for chamber purge gas (MSC supplied)
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457-2427 INTERFACE SCHEMATIC FOR MSC INSTALLATION
Figure 8-11
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8.7.3 Inert Gas System.

(1) Inert gas supply to vacuum chamber feed-throughs (MSC supplied)

(2) Throttling valve for chamber purge gas (MSC supplied)

(3) Throttling valve for spray bar gas (MSC supplied)

(4) Piping for specimen cooling spray bar gas from vacuum chamber feed-

through to heater support structure gas manifolds (MDAC-E supplied)

8.7.4 Coolant System.

(1) Closed loop coolant system using glycol-water capable of heat dissipation

of 4.2 Mw max. (Proposed system at MSC - less heat dissipation required

for one heater array.) (MSC supplied)

(2) Piping to vacuum chamber feed-throughs, 250 gpm supply and drain (or

return) (MSC supplied)

(3) Piping from vacuum chamber feed-throughs to heater support structure,

250 gpm supply and drain (or return) (MDAC-E supplied)

(4) Shutoff valves (2) (MSC supplied)

(5) Pressure gauges (optional) (MSC supplied)

(6) Flowmeter (optional) (MSC supplied)

8.7.5 Instrumentation

(1) Heat flux calorimeters for feedback control, one per heater module

(MDAC-E supplied)

(2) Radiometers for temperature indication, one per heater and absorber

module (MDAC-E supplied)

(3) Coolant flow switches for power interlocks, one per heater and

absorber module (MDAC-E supplied)

(4) Temperature monitoring thermocouples, as required (MSC supplied)

(5) Data acquisition system (MSC supplied)

Test article for acceptance test of full scale heating array is assumed to

be supplied by NASA-MSC. This test article should be capable of surviving the

maximum temperature for the heating duration required for the acceptance tests.

8.8 PROVISION FOR FUTURE EXPANSION. The individual heater modules and the

complete heater array are designed so that leading edge test specimens having

spans greater than 30 inches may be tested by placing additional arrays end to end.

Such design consists chiefly of configuring the individual modules to achieve span-

wise heat flux uniformity, and secondarily in mechanical arrangement of the modules

to avoid interference between modules and to facilitate interconnection.
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With the module design, three different concepts for spanwise stacking of

individual modules may be implemented. Each concept represents an increase in the

spanwise heat flux uniformity at the expense of increased complication in

assembling and operating the stacked modules.

As shown in Figure 8-12, the first concept is to simply place the individual

modules as close together as possible with the end reflectors touching. The module

design will minimize the distance between heated portions of adjacent elements in

this concept; but clearances for elimination of electrical discharge, thermal expan-

sion, and cooling put a lower limit of about 2.9 inches on this distance. This

first concept was evaluated during this program (Phase I).

The second concept is identical to the first except that the heater elements

are replaced by elements in which the thick unheated portion of the element has

been folded under the heated strip. These hot-end elements were developed by MDC

to facilitate endwise stacking of modular heaters with minimum unheated area. MDC

holds the patent (No. 3,573,429) covering the hot-end element. Hot-end elements

reduce the distance between heated strips to about 1.80 inches at the expense of

more costly and considerably more fragile elements.

The third concept resembles the second in using hot-end elements but reduces

the distance between heated strips to the practical minimum of about 1.3 inches.

The two standard end reflectors of adjacent modules are replaced by a single

special siamese reflector connecting water manifolds of the two units.

8.8.1 Testing in an Oxidizing Atmosphere. As shown in Figure 8-13, the indi-

vidual heater modules or the entire array can operate in an oxidizing environment

by providing a coated columbium, carbon-carbon, or similar susceptor plate to

cover each module. The interior of the module surrounding the elements can then

be purged with an inert gas to protect the elements from oxidation. Maximum

operating temperature is, of course, limited by the susceptor plate material and

coating. Coated columbium, for instance, would limit operation to about 2500°F to

27000F for multiple cycle tests.

Designs need to be investigated to improve sealing of reflector gaps and

development of a clip-on susceptor plate.

8.8.2 Testing of Ablators. In addition to being suitable for testing ther-

mal protection systems which have zero or low mass loss rates, the graphite heater

is suitable for testing ablative materials. MDC graphite heaters have been used

and are being used for testing silica phenolic (110 pcf) through a gamut of
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Figure 8-12
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GAS COOLING SPRAY BAR

SUSCEPTOR PLATE
GRAPHITE HEATER ELEMENTS

SIDE REFLECTOR

SIDE REFLECTOR BOTTOM REFLECTOR

457-2420

TRANSVERSE SECTION OF HEATER MODULE SHOWING SUSCEPTOR
PLATE FITTED FOR OXIDIZING ENVIRONMENT TESTS

Figure 8-13

densities down to 15 pcf silicone ablators including extensive testing of the

Gemini heat shield material (DC 325). Heat flux versus time histories, as high as
Btu2 2 5 f t-sec have been programmed for ablative materials. Most of these programs

were conducted without the use of a susceptor plate. During these tests, the

pyrolysis by-products generated by the ablator coated the graphite heater element

and deposited on the cool parts of the test chamber. Figures 8-14 and 8-15 show

the post-test condition of the heater element, the charred ablator, and the test

setup. The graphite heater elements, although coated, with ablation products, per-

formed well throughout the test. This is in direct contrast with quartz lamps which

fail shortly after the start of an ablator test because of contamination of the

quartz envelope. Due to the single cycle testing for an ablator specimen, graphite

elements have been replaced after each test run. When the susceptor plate is used,

the graphite elements are protected and their life increases to more than 100

mission simulations.

The heating array is suitable for testing ablative leading edges but design

and experimental studies are necessary to insure cleanliness of the reflectors for

high heat flux testing. Gas spray bars in the bottom of the reflectors, or the use

of a susceptor plate will probably be necessary.
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Figure 8-14

HOT END GRAPHITE HEATER ELEMENT
4x12" (POST TEST)
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TEST POST
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GRAPHITE FELT CALORIMETERS
GUARD

TESTING OF A SILICA PHENOLIC ABLATOR WITH THE GRAPHITE HEATER
Figure 8-15
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9.0 ESTIMATES FOR PHASE II

Rough Order of Magnitude (ROM) cost information for accomplishing Phase II

were submitted to NASA-MSC for planning purposes as specified in Reference 1. Fonur

ROM's submitted represented alternatives to meet NASA's objectives. Briefly, esti-

mates were prepared for the following packages:

A. Those items necessary to provide the desired temperature distribution on

the 8-inch radius leading edge test article. These items also satisfy the require-

ments for testing 6 to 15 inch radius leading edges. The major items were:

o nine heater modules

o five absorber modules

o one support structure consisting of cooling water manifolds, gas

manifolds, module support plates, edge guards, test article end

guards, end covers, specimen support, heat flux sensors, water

cooled power cables, etc.

o spare parts

o engineering effort consisting of array final design, module

operational testing and performance mapping, design final report,

acceptance test plan, supervising acceptance tests, acceptance

test report, and operational and maintenance manuals.

B. Same as (A) plus five additional heater modules. This allows heating the

entire exterior surface of the leading edge wetted circumference of 65 inches.

These heater modules can be substituted for the absorber modules to provide greater

versatility in desired heat distribution.

C. Those items necessary to optically measure the surface temperatures

around the leading edge.

D. Installation of the heater array in MDC's St. Louis facilities and three

weeks of testing.

This information was transmitted to Farris R. Tabor of NASA, MSC Houston via

Letter 982-09-E016-3484 dated 10 November 1972.
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10.0 CONCLUSIONS AND RECOMMENDATIONS

The principal analysis and design considerations for the design of a high

temperature leading edge heating array have been explored. The array uses graphite

heater modules and absorber modules to achieve the desired temperature distribu-

tion around the leading edge. Many new design innovations were incorporated into

a prototype heater module which was designed, fabricated and tested at entry pres-

sures to determine its performance and heat flux uniformity. Design studies and

performance testing showed that a significant increase in heater performance can

be achieved by using gold coated reflectors. Operation of the heater module was

demonstrated using thermocouple and heat flux sensors as feedback to an Ignitron

control system. Preliminary design of the full scale heating array incorporated

flexibility for testing 6 to 15 inch radius leading edges of arbitrary length by

nesting heating arrays. The utilities for the individual modules are supplied

through the array support structure which supports the modules, the test article,

and the end covers that prevent stray radiation from heating the vacuum chamber

which houses the array.

Because of the flexible design of the array using heater and absorber modules,

the.array can be used to test a variety of Thermal Protection Systems (TPS) rang-

ing from a 6-inch radius leading edge to a flat panel. Some of the types of

material/systems that can be tested are:

o RPP type carbon-carbon

o Ablators

o Metallics including heat pipe TPS

o Ceramic Reusable Surface Insulations

o Antenna Materials

o Orbital Thermal Control Coatings

The basic module can also be adapted with a susceptor plate for testing

hardware requiring an oxidizing environment. This type testing is limited by the

temperature capabilities of the susceptor plate material. Coated columbium has

been successfully used as a susceptor plate for repeated tests to 2500 0F. The

heating array also provides an economical means for thermally testing Shuttle

Antennas located in the main body heat protection or in curved regions such as

the "chine," etc.
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This Phase I program was a short (5 months) development program, and additional

work is recommended before finalizing the array design and fabricating the full scale

array. The areas requiring additional effort are as follows:

o Continue performance and uniformity testing of the prototype module for

several levels of thermal conductance through the test article.

o Fabricate another set of reflectors for the prototype module incorporating

gold coatings, additional view ports for radiometers and susceptor plate

mounts for testing in an oxidizing atmosphere.

o Perform analytical and experimental investigations to determine the amount

of spray bar gas required to cool various types of leading edges during

the latter stages of entry simulation.

o Further explore methods of mounting the control thermocouple or heat flux

sensor, etc, preferably in the test article, for controlling the array

during time-profiled entry heating.

o Investigate temperature measurements of the test article at high tempera-

tures.
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Appendix A

Drawings

The Engineering drawings and layout drawings listed below for the

various components of the leading edge heating array were furnished

to NASA-MSC.

List of Drawings

Drawing No. Title

T-055352 High Temperature Leading Edge Heating Array

T-055351 Leading Edge Heating Array Absorber Module

T-055327 Shuttle Leading Edge Prototype Graphite Heater
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